• Title/Summary/Keyword: caisson-breakwater

Search Result 98, Processing Time 0.03 seconds

Two and Three Dimensional Analysis about the Reflection Coefficient by the Slit Caisson and Resulting Wave Pressure Acting on the Structure (슬리트케이슨제에 의한 반사율과 구조물에 작용하는 파압에 관한 2차원 및 3차원해석)

  • Lee, Kwang-Ho;Choi, Hyun-Seok;Baek, Dong-Jin;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.374-386
    • /
    • 2010
  • Recently, the theoretical and experimental research is being made actively in control character of waves of perforated-wall caisson breakwater like the slit caisson. This study showed that the character of reflection coefficient and the wave pressure acting on the front and inner of slit caisson were estimated in two and three dimensional numerical wave flume and compared each other. The numerical experiment was set and conducted by various cases as to a variety of wave steepness under 7 sec, 9 sec, 11sec and 13 sec period condition. In this study using a 2 and 3 dimensional numerical wave flume, it applied the Model for the immiscible two-phase flow based on the Naveir-Stokes Equations. This technique can easily reproduce a complicated physical phenomenon more than others and organize the program simply. According to the results of the experiment, the reflection coefficient was estimated high in short-period waves. However, 2-dimensional numerical experiment and 3-dimensional numerical experiment were the same in case of the long-period waves and high wave steepness. And to conclude in case of short-period waves the pressures were a relatively small difference between the two, but there was a big gap in longperiod waves and high wave steepness.

Settlement Evaluation of Caisson-Type Quay Wall Using PSI of Velocity During Earthquake (지진시 속도의 PSI를 활용한 케이슨식 안벽의 침하량 평가 )

  • Gichun Kang;Hyunjun Euo;Minje Baek;Hyunsu Yun;Jungwook Choi;Seong-Kyu Yun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.71-83
    • /
    • 2023
  • It is very important to predict the amount of settlement in order to maintain the function of the coastal structure. Finite element analysis methods and real and model experiments are used as methods for this, but this has the disadvantage of requiring a lot of cost and time. Therefore, this study was conducted for the purpose of a simple formula proposal that can easily predict the amount of settlement of the caisson-type quay wall structure. In the research process, after calculating the PSI (Power Spectrum Intensity) of the velocity, the amount of settlement of the structure is calculated by substituting it into the simple formula of the existing gravity breakwater. By comparing and analyzing the amount of settlement of the structure obtained through numerical analysis, it was confirmed that the error between the amount of settlement of the existing simple formula and the amount of settlement of the numerical analysis was large, and it was confirmed that the background could not be considered in the case of the existing simple formula. Therefore, this study proposed a correction factor for the background of the quay wall structure, indicating a simple formula that can obtain the amount of settlement of the caisson-type quay wall structure. Compared to the numerical analysis settlement amount, it was judged that this simple formula had sufficient precision in calculating the caisson-type quay wall settlement amount. In addition, facilities vulnerable to earthquake resistance can be easily extracted in situations where time and cost are insufficient, and it is expected to be used as a screening technique.

Subsidence estimation of breakwater built on loosely deposited sandy seabed foundation: Elastic model or elasto-plastic model

  • Shen, Jianhua;Wu, Huaicheng;Zhang, Yuting
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.418-428
    • /
    • 2017
  • In offshore area, newly deposited Quaternary loose seabed soils are widely distributed. There are a great number of offshore structures has been built on them in the past, or will be built on them in the future due to the fact that there would be no very dense seabed soil foundation could be chosen at planed sites sometimes. However, loosely deposited seabed foundation would bring great risk to the service ability of offshore structures after construction. Currently, the understanding on wave-induced liquefaction mechanism in loose seabed foundation has been greatly improved; however, the recognition on the consolidation characteristics and settlement estimation of loose seabed foundation under offshore structures is still limited. In this study, taking a semi-coupled numerical model FSSI-CAS 2D as the tool, the consolidation and settlement of loosely deposited sandy seabed foundation under an offshore breakwater is investigated. The advanced soil constitutive model Pastor-Zienkiewics Mark III (PZIII) is used to describe the quasi-static behavior of loose sandy seabed soil. The computational results show that PZIII model is capable of being used for settlement estimation problem of loosely deposited sandy seabed foundation. For loose sandy seabed foundation, elastic deformation is the dominant component in consolidation process. It is suggested that general elastic model is acceptable for subsidence estimation of offshore structures on loose seabed foundation; however, Young's modulus E must be dependent on the confining effective stress, rather than a constant in computation.

Numerical Simulation of Nonlinear Interaction between Composite Breakwater and Seabed under Irregular Wave Action by olaFlow Model (olaFlow 모델에 의한 불규칙파 작용하 혼성방파제-해저지반의 비선형상호작용에 관한 수치시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;Jung, Uk Jin;Choi, Goon-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.129-145
    • /
    • 2019
  • For the design of composite breakwater as representative one of the coastal and harbor structures, it has been widely discussed by the researchers about the relation between the behavior of excess-pore-water pressure inside the rubble mound and seabed caused by the wave load and its structural failure. Recently, the researchers have tried to verify its relation through the numerical simulation technique. The above researches through numerical simulation have been mostly applied by the linear and nonlinear analytic methods, but there have been no researches through the numerical simulation by the strongly nonlinear mutiphase flow analytical method considering wave-breaking phenomena by VOF method and turbulence model by LES method yet. In the preceding research of this study, olaFlow model based on the mutiphase flow analytical method was applied to the nonlinear interaction analysis of regular wave-composite breakwater-seabed. Also, the same numerical techniques as preceding research are utilized for the analysis of irregular wave-composite breakwater-seabed in this study. Through this paper, it is investigated about the horizontal wave pressures, the time variations of excess-pore-water pressure and their frequency spectra, mean flow velocities, mean vorticities, mean turbulent kinetic energies and etc. around the caisson, rubble mound of the composite breakwater and seabed according to the changes of significant wave height and period. From these results, it was found that maximum nondimensional excess-pore water pressure, mean turbulent kinetic energy and mean vorticity come to be large equally on the horizontal plane in front of rubble mound, circulation of inflow around still water level and outflow around seabed is formed in front of rubble caisson.

Numerical Simulation of Interaction between Composite Breakwater and Seabed under Regular Wave Action by olaFlow Model (olaFlow 모델에 의한 규칙파작용 하 혼성방파제-해저지반의 상호작용에 관한 수치시뮬레이션)

  • Bae, Ju-Hyun;Lee, Kwang-Ho;Jung, Uk Jin;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.270-285
    • /
    • 2018
  • The behavior of wave-induced pore water pressure inside the rubble mound and seabed, and the resultant structure failure are investigated, which are used in design of the composite breakwater representing the coastal and harbor structures. Numerical simulation techniques have been widely used to assess these behaviors through linear and nonlinear methods in many researches. While the combination of strongly nonlinear analytical method and turbulence model have not been applied yet, which can simulate these characteristics more accurately. In this study, olaFlow model considering the wave-breaking and turbulent phenomena is applied through VOF and LES methods, which gives more exact solution by using the multiphase flow analytical method. The verification of olaFlow model is demonstrated by comparing the experimental and numerical results for the interactions of regular waves-seabed and regular waves-composite breakwater-seabed. The characteristics of the spatial distributions of horizontal wave pressure, excess-pore-water pressure, mean flow velocity and mean vorticity on the upright caisson, and inside the rubble mound and seabed are discussed, as well as the relation between the mean distribution of vorticity size and mean turbulent kinetic energy. And the stability of composite breakwater are also discussed.

Dynamic Response Analysis of Caisson-Type Breakwater Using Wave-Induced Ambient Vibration (파랑유발 상시진동을 이용한 케이슨 방파제 구조물의 진동응답분석)

  • Lee, So-Young;Yi, Jin-Hak;Nguyen, Khac-Duy;Lee, Po-Young;Kim, Jeong-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.606-609
    • /
    • 2011
  • 본 연구에서는 실제 케이슨 방파제 구조물의 진동기반 안정성 평가를 위한 기초연구로서, 현장실험을 통해 케이슨 방파제 구조물의 진동응답을 분석하였다. 이를 위해 첫째, 대상구조물로서 부산항 오륙도 케이슨 방파제를 선정하였다. 둘째, 파랑에 의한 상시진동 가속도응답을 계측하였다. 마지막으로, 계측된 가속도신호로부터 파워스펙트럼밀도함수, 고유진동수 및 모드강성도 분석을 통해 케이슨 방파제의 진동특성을 분석하였다.

  • PDF

Vibration-based Structural Health Monitoring for Foundation-Mound of Caisson-type Breakwater (케이슨식 방파제 기초마운드의 진동기반 건전성 모니터링)

  • Lee, So-Young;Kim, Jeong-Tae;Park, Woo-Sun;Kim, Hyung-Sub
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.79.1-79.1
    • /
    • 2010
  • 본 연구에서는 케이슨식 방파제 구조물에 대하여 기초마운드의 잠재적인 손상 모니터링에 관한 연구를 수행하였다. 이를 위해 첫째, 케이슨식 방파제 기초마운드의 이상 상태 여부를 판단하기 위하여 진동응답 분석기법을 선정하였다. 둘째, 선정된 기법에 의한 손상 예측 가능성의 검증을 위하여 케이슨식 방파제의 구조모형을 제작하였다. 셋째, 모형케이슨에 대한 유한요소 모델 생생하여 기초마운드의 손상에 따른 진동응답을 분석하였다. 마지막으로, 모형케이슨에 대한 진동실험을 통하여 기초마운드의 손상 예측을 수행하였다.

  • PDF

Determination of cross section of composite breakwaters with multiple failure modes and system reliability analysis (다중 파괴모드에 의한 혼성제 케이슨의 단면 산정 및 제체에 대한 시스템 신뢰성 해석)

  • Lee, Cheol-Eung;Kim, Sang-Ug;Park, Dong-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.827-837
    • /
    • 2018
  • The stabilities of sliding and overturning of caisson and bearing capacity of mound against eccentric and inclined loads, which possibly happen to a composite caisson breakwaters, have been analyzed by using the technique of multiple failure modes. In deterministic approach, mathematical functions have been first derived from the ultimate limit state equations. Using those functions, the minimum cross section of caisson can straightforwardly be evaluated. By taking a look into some various deterministic analyses, it has been found that the conflict between failure modes can be occurred, such that the stability of bearing capacity of mound decreased as the stability of sliding increased. Therefore, the multiple failure modes for the composite caisson breakwaters should be taken into account simultaneously even in the process of deterministically evaluating the design cross section of caisson. Meanwhile, the reliability analyses on multiple failure modes have been implemented to the cross section determined by the sliding failure mode. It has been shown that the system failure probabilities of the composite breakwater are very behaved differently according to the variation of incident waves. The failure probabilities of system tend also to increase as the crest freeboards of caisson are heightening. The similar behaviors are taken place in cases that the water depths above mound are deepening. Finally, the results of the first-order modal are quite coincided with those of the second-order modal in all conditions of numerical tests performed in this paper. However, the second-order modal have had higher accuracy than the first-order modal. This is mainly due to that some correlations between failure modes can be properly incorporated in the second-order modal. Nevertheless, the first-order modal can also be easily used only when one of failure probabilities among multiple failure modes is extremely larger than others.

Comparison of the Formulas for the Wave Forces Acting on the Perforated Caisson Breakwater (유공케이슨 방파제에 작용하는 파력 공식의 비교)

  • Ji, Chang-Hwan;Oh, Sang-Ho;Oh, Young-Min;Lee, Dal Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.4
    • /
    • pp.217-227
    • /
    • 2015
  • In this study, two-dimensional physical experiment was carried out to examine the applicability of the three formulas(Takahashi and Shimosako, 1994; Tabet-Aoul and Lambert, 2003; Li, 2007), which were proposed to calculate the wave forces acting on perforated caisson breakwaters. In order to quantitatively compare the measured with the estimated values based on the wave formulas, the refined index of agreement and the coefficient of determination were calculated, by which the degree of agreement was evaluated. Among the three wave formulas, DUT formula (Li, 2007) showed the smallest deviation from the measured forces, whereas Takahashi formula (Takahashi and Shimosako, 1994) showed the largest deviation. Meanwhile, comparison of the magnitude of the measured wave forces with those from the three formulas revealed that DUT formula slightly underestimate, while the others overestimate the measured forces.

Evaluation of Allowable Criteria in First-Passage Probability Method for Caisson Sliding of Vertical Breakwater (직립방파제의 케이슨 활동에 대한 최초통과확률법의 허용기준 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.317-326
    • /
    • 2013
  • Probabilistic design methods can consider uncertainties of design variables and are widely used in the design of vertical breakwaters. The probabilistic design methods include a partial safety factor method, reliabilitybased design method, and performance-based design method. Especially the performance-based design method calculates the accumulated sliding distance during the lifetime of the breakwater or during a design storm. Recently a time-dependent performance-based design method has been developed based on the first-passage probability of individual sliding distance during a design storm. However, because the allowable criteria in the first-passage probability method are not established, the stability of structures cannot be quantitatively evaluated. In this study, the allowable first-passage probabilities for two limit states are proposed by calculating the first-passage probabilities for the cross-sections designed with various water depths and characteristics of extreme wave height distributions. The allowable first-passage probabilities are proposed as 5% and 1%, respectively, for the repairable limit state (allowable individual sliding distance of 0.03 m) and ultimate limit state (allowable individual sliding distance of 0.1 m). The proposed criteria are applied to the evaluation of the effect of wave-height increase due to climate change on the stability of the breakwater.