• Title/Summary/Keyword: cadmium-tolerant yeast

Search Result 14, Processing Time 0.024 seconds

Mechanism of Cadmium Accumulation into the Cell of Cadmium-Ion Tolerant Yeast (카드뮴 내성 효모의 세포내 카드뮴 축적 기작)

  • 유대식;송형익;정기택
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.3
    • /
    • pp.233-238
    • /
    • 1990
  • The mechanism of intracellular accumulation of cadmium in a cadmium-ion tolerant yeast, Hansenula ammala B-7, which is an extreme cadmium tolerant strain and has the ability to take up a large amount of cadmium was investigated. The amounts of cadmium taken up by the scalded yeast cells were 2 to 3 times more than the value of the living cells. The living Hansenula anomala B-7 cells adsorbed 74% of cadmium taken up onto the other layer of the cells and 26% of it accumulated inside the cells. But the scalded cells adsorbed 98.3% of cadmium taken up and accumulated 1.7% of it inside the cells. A cadmium uptake and its accumulation were accelerated up to 162.3% and 275.4% by Triton X-100 in the living cells, respectively. Whereas in the scalded cell cadmium uptake was not affected by Triton X-100. Furthermore the cadmium uptake and its accumulation were strongly inhibited by metabolic inhibitors like 2,4-dinitrophenol, sodium azide and potassium cyanide in the living cells, but in the scalded cells cadmium uptake was not affected by metabolic inhibitors. These results suggested that the intracellular accumulation of cadmium by the cadmium-tolerant Hansenula anomala B-7 cells was apparently dependent of biological activity, and also gave evidence of the existance of energy-dependent system.

  • PDF

Selection and Isolation of a Mutant Yeast Strain Tolerant to Multiple Targeted Heavy Metals

  • Lee, Sangman
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.2
    • /
    • pp.129-133
    • /
    • 2014
  • BACKGROUND: This study was performed for selecting yeast mutants with a high tolerance for targeted metals, and determining whether yeasts strains tolerant to multiple heavy metals could be induced by sequential adaptations. METHODS AND RESULTS: A mutant yeast strain tolerant to the heavy metals cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn) was selected by sequential elevated exposures to each metal with intermittent mutant isolation steps. A Cd-tolerant mutant was isolated by growing yeast cells in media containing $CdCl_2$ concentrations that were gradually increased to 1 mM. Then the Cd-tolerant mutant was gradually exposed to increasing levels of $CuCl_2$ in growth media until a concentration of 7 mM was reached, thus generating a strain tolerant to both Cd and Cu. In the subsequent steps, this mutant was exposed to $NiCl_2$ (up to 8 mM), and a resultant isolate was further exposed to $ZnCl_2$ (up to 60 mM), allowing the derivation of a yeast mutant that was simultaneously tolerant to Cd, Cu, Ni, and Zn. CONCLUSION: This method of inducing tolerance to multiple targeted heavy metals in yeast will be useful in the bioremediation of heavy metals.

Effect of Environmental Stress on Morphological Change of an Extremely Cadmium-Tolerant Yeast, Hansenula anomala B-7

  • Huh, Nam-Eung;Choi, Nack-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.70-77
    • /
    • 1999
  • An extremely cadmium-tolerant budding yeast, Hansenula anomala B-7 underwent a morphological switch in response to either heat shock treatment or cadmium stress, respectively. It exhibited a morphological transition from a unicellular yeast form to a pseudohyphae-like coagulation when subjected to prolonged heat shock treatment. In contrast, the yeast cells showed an irregularity in surface morphology when given thermal stress for a short time. Patterns of proteins expressed in the pseudohyphae-like cells demonstrated that several proteins were overexpressed while others were underexpressed in comparison with those prepared from the cells in the yeast form. It was a striking feature, however, that nearly 40% of the proteins extracted from the cells in the pseudohyphae form appeared to be composed of a single polypeptide. This polypeptide was apparently overexpressed during the pseudohyphae phase and its molecular weight was estimated to be 58 kDa according to SDS-PAGE analysis. However, a significant level of the protein was not observed in the cells before transition to pseudohyphae. The architecture of the cell shape was also damaged when incubated in a medium containing more than 1,000 ppm (8.9mM) of cadmium ions, although able to proliferate at a slow rate. However, the irregularity in the cell morphology exerted either by the brief heat shock treatment or by the cadmium stress with the high concentrations of the metal ions was not repaired, even though the damaged cells were allowed to grow for sufficient time in fresh, cadmium-free medium.

  • PDF

카드뮴이 카드뮴 내성 효모세포내의 효소 활성에 미치는 영향

  • 유대식;박은규;박정문
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.3
    • /
    • pp.268-273
    • /
    • 1996
  • An extremely cadmium tolerant yeast, Hansenula anomala B-7 used to determine the modification of the intracellular enzyme activities by cadmium ion. The activities of alcohol dehydrogenase, phosphofructokinase, and cytidine deaminase were decreased up to 90%, 40%, and 86% compa- red with the control by 1 mM cadmium nitrate respectively, but the activities of malate dehydrogenase, 6- phosphogluconate dehydrogenase, cytochrome c oxidase, and alkaline phosphatase were increased up to 440%, 136%, 260% and 155% compared with the control by 1 mM cadmium nitrate respectively. These results show that the activities of the enzymes participating in Embden-Mayerhof pathway (e.g. anaerobic metabolism) were reduced by cadmium, but those involved in hexose monophosphate pathway and tricarboxylic acid cycle (e.g. aerobic metabolism) were stimulated in contrast. It has been suggested that the diminished activity of cytidine deaminase in pyrimidine nucleotide dissimilation occured due to the inhibited nucleotide dissimilation by cadmium ion; the enhanced activity of cytochrome c oxidase was specifically required in order to oxidize a raised amount of NADH and NADPH due to the increased aerobic metabolism.

  • PDF

Increased Uptake of Cadmium by Surfactants in a Cadmium-Tolerant Yeast (카드뮴 내성효모의 카드뮴축적에 미치는 계면활성제의 영향)

  • 송형의
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.2
    • /
    • pp.104-113
    • /
    • 1996
  • Cadmium uptake by growing and nongrowing (intact) cells of a chdmium-tolerant yeast Hansenula anomala B-7 in the presence of surfactants was studied. In growing cultures the addition of Triton X-100 or Tween 80 increased cadmium uptake by about 30% with no inhibition of cell growth, and in intact cells Triton X-100 increased cadmium accumulation by about 80% compared to surfactant-free controls. Considering balance between increased uptake and pollution, the addition of 0.1% Triton X-100 was preferable. By the mixed addition with defoamer silicone, during growth of cells Tween 80 or Triton X-100 enhanced uptake efficiency of cadmium compared to its single addition, whereas in intact biomass each of surfactants tested had no significant effect on cadmium uptake. The uptake of cadmium was observed to rise sharply to a maximum and then declined with increasing pH, and maximum accumulation of cadmium by growing and intact cells occurred at the pH of 6.0 and 7.0, respectively. A significant increase in cadmium uptake occurred with shaking culture. Cadmium uptake by growing and intact cells was almost completed during the culture time of 72 or 24 hrs, respectively. Scalded cells sorbed much more cadmium-ion than living cells.

  • PDF

Morphological Changes of Hansenula anomala B-7 by Cadmium Ion (카드뮴이온에 의한 Hansenula anomala B-7의 형태 변이)

  • 송형익;유대식
    • Korean Journal of Microbiology
    • /
    • v.29 no.6
    • /
    • pp.397-401
    • /
    • 1991
  • Yeast-form cells of cadmium ion-tolerant Hansenula anomala B-7 were changed to mycelial cells in medium containing more than $400\mu$g/ml of cadmium. Moreover, the mycelial cells were exchanged into clumped cells in a medium containing more than $1,000\mu$g/ml of cadmium. Optimal conditions of mycelial cell formation were achieved in the presence of .$1,000\mu$g/ml of cadmium with shaking cultivation for 7 days. Glucan and mannan contents of the yeast cell wall frown with $1,000\mu$g/ml of cadmium decreased by 10% compared with those grown without cadmium. However, protein and lipid contents increased about 20% respectively. By cadmium, no significant findings in specific amino acid contents were discovered.

  • PDF

Characterzation of a Cadmium-ion Tolerant Strain of Hansenula anomala (카드뮴 내성 Hansenula anomala 균주의 특성)

  • 유대식;송형익;정기택
    • Korean Journal of Microbiology
    • /
    • v.24 no.1
    • /
    • pp.57-61
    • /
    • 1986
  • In order to remove of cadmium from waste water an identification of a cadmium-ion tolerant yeast B-7 isolated from the sludge of zinc mining district was studied. By the taxonomecal characteristics of strain B-7 it was identified as Hansenula anomala B-7 or similar strain. The cadmium-ion tolerance of the strain B-7 was determined as $2,700{\mu}g/ml$ of cadmium-ion by density gradient agar plate method. The strain B-7 grew well in an aqueous medium containing $1,000{\mu}g/ml$ of cadmium-ion.

  • PDF

Effect of Triton X-100 on Intracellular Accumulation of Cadmium in Hansenula anomala (카드뮴의 Hansenula anomala 세포내 축적에 미치는 Triton X-100의 효과)

  • 유대식;박정문;송형익
    • Korean Journal of Microbiology
    • /
    • v.25 no.2
    • /
    • pp.110-116
    • /
    • 1987
  • As a pary of investgation on effective accumulation of cadmium in yeast cells, effect of surfactant was studied on intracellular accumulation of cadmium in extremely cadmium-tolerant yeast, Hansenula anomala B-7. Cadmium accumulation was enhanced up to approximately 40% by the addition of non-ionic surfactant, Triton X-100 and its optimal concentration was found to be 0.1-0.2%. Furthermore, optimum conditions for intracellular accumulation of cadmium were at $40^{\circ}C$ and initial pH 6.0 for 48 hours under shaking culture.

  • PDF

Intracellular Accumulation of Cadmium by Intact Cadmium Tolerant Yeast Cells (카드뮴 내성 효모의 Intact Cells에 의한 카드뮴의 세포내 축적)

  • Yu, Tae-Shick;Song, Hyung-Ik;Chung, Ki-Taek
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.1
    • /
    • pp.29-34
    • /
    • 1989
  • An intracellular accumulation of cadmium by the intact cell of an extremely cadmium tolerant yeast, Hansenula anomala B-7, was investigated in the presence of Triton X-100. The uptake of cadmium by the intact cell was efficiently enhanced up to approximately 40% or more by 0.1% of Triton X-100 and Aerosol OT, respectively. The Michaelis constant, Km, done by Lineweaver-Burk plot of accumulation velocity of cadmium vs. cadmium concentration was calculated to be 0.247mM. The optimal conditions of pH and the temperature for the effective cadmium uptake were from neutrality to alkali and 4$0^{\circ}C$, respectively. The accumulation of cadmium was increased approximately 3 times under the shaking incubation, with no correlation to shaking rate. By zinc the cadmium accumulation was decreased.

  • PDF

Characterization of a Cadmium-resistant Yeast Strain in Response to Cadmium or Heat Shock Stress

  • Huh, Nam-Eung;Choi, Nack-Shick;Seo, Young-Kyo;Yu, Tae-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.30-35
    • /
    • 1994
  • A varient strain of budding yeast, Hansenula anomala B-7 which had been identified to be highly resistant to cadmium ions, were observed by transmission electron microscopy. It was shown that the cells accumulated excess amounts of cadmium ions throughout inside the cell rather than on the cell surface. The cell growth in response to cadmium or heat shock stress has also been investigated. It was observed that the cells precultured in the presence of 500 $\mu$ g/ml of Cd ions grew slower than those precultured at 1, 000 $\mu$ g/ml of the metal ions, when they were cultivated in the media containing 1, 000 $\mu$g/ml of the metal ions. Heat shock, however, stimulated the cell growth transiently, when the cells were allowed to grow in the presence of 1, 000 $\mu$g/ml of the metal ions. But the cells given heat shock for more than 100 min received permanent damage to growth. Effects of both stresses on budding rate was also examined. It revealed that the stresses did not change the budding ratio much, which was contradictory to that observed from the same budding yeast, Saccharomyces cerevisiae. Furthermore, the cells treated with 1, 000 $\mu$g/ml of the metal ions not only induced, but also switched off the expression of several new proteins. Some of the cadmium stress-inducible proteins were estimated to be also induced by heat shock stress.

  • PDF