• Title/Summary/Keyword: cadmium metal

Search Result 726, Processing Time 0.031 seconds

Monitoring of Radioactivity and Heavy Metal Contamination of Dried Processed Fishery Products (건조 수산가공식품의 방사능 및 중금속 오염도 조사)

  • Lee, Ji-Yeon;Jeong, Jin-A;Jeon, Jong-Sup;Lee, Seong-Bong;Kwon, Hye-Jung;Kim, Jeong-Eun;Lee, Byoung-Hoon;Mo, A-Ra;Choi, Ok-Kyung
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.3
    • /
    • pp.248-256
    • /
    • 2021
  • A total of 120 samples corresponding to 12 categories of dried processed fishery products distributed in Gyeonggi-do were examined for radioactivity contamination (131I, 134Cs, 137Cs) and heavy metals (lead, cadmium, arsenic, and mercury). One natural radioactive material, 40K, was detected in all products, while the artificial radioactive materials 131I, 134Cs and 137Cs were not detected at above MDA (minimum detectable activity) values. The detection ranges of heavy metals converted by biological basis were found as follows: Pb (N.D.-0.332 mg/kg), Cd (N.D.-2.941 mg/kg), As (0.371-15.007 mg/kg), Hg (0.0005-0.0621 mg/kg). Heavy metals were detected within standard levels when there was an acceptable standard, but the arsenic content was high in most products, although none of the products had a permitted level of arsenic. In the case of dried processed fishery products, there are products that are consumed by restoring moisture to its original state, but there are also many products that are consumed directly in the dry state, so it will be necessary to set permitted levels for heavy metals considering this situation in the future. In addition, Japan has decided to release contaminated water from the Fukushima nuclear power plant into the ocean, so there is high public concern about radioactivity contamination of food, including fishery products. Therefore, continuous monitoring of various food items will be necessary to ease consumers' anxiety.

Effect of Different Substances on Composting of Poultry Manure (부재료가 돈분뇨 퇴비화에 미치는 영향)

  • Yoon, Yong-Cheol;Lee, Min-Ho;qasim, Waqas;Lee, Yong-Jin;Kim, Won-Joong;Lee, Jong-Goo;Kim, Hyeon-Tae
    • Journal of agriculture & life science
    • /
    • v.53 no.1
    • /
    • pp.117-126
    • /
    • 2019
  • This paper presents an experiment to examine the possibility of treating carcass while making compost with a horizontal cylinder composting equipment. The findings were as follows: as for heavy metal content, zinc content was above the allowed level in some measuring sections of the general operation and the entire measuring sections of the carcass operation, whose copper content was higher than the general operation. The wood chip operation was lower than the allowed level in all the heavy metals and similar or the same as the carcass operation in copper, cadmium and arsenic. Its nickel content was 29.5~63.8%, which was relatively higher than 9.3~18.0% and 15.8~18.0% of the general and carcass operation, respectively. Its chrome content was 14.2~31.9%, which was relatively higher than that of the general and carcass operation. The integrated operation was lower than the allowed level in all the heavy metals. Its copper and zinc content was 34.9~54.5% and 53.1~75.9%, which was similar to 48.9~52.6% and 64.6~85.9%, respectively, in the wood chip operation. Its chrome and nickel content was stabilized while their content was rather high in the wood chip operation. The average and final moisture content of the carcass operation was 60.7% and 49.6%, respectively. Its average moisture content was a little bit higher than the recommended level of 55.0%, but its final moisture content was lower than the recommended level. The average and final moisture content of the integrated operation was 29.2% and 18.6%, respectively, which was the lowest level among the four operation modes. The overall moisture content of the operation modes was under the recommended level of 55.0% with some variance among the modes. The C/N ratio was the lowest in the carcass operation and the highest in the general operation. The average C/N ratio of the operation modes was in the range of 13.7~20.3 with the total average of 18.3, and the modes kept it under the proper level of 30.0.

Physicochemical Properties of Pearl Oyster Muscle and Adductor Muscle as Pearl Processing Byproducts (진주 가공부산물(육 및 패주)의 이화학적 특성)

  • Kim, Jin-Soo;Kim, Hye-Suk;Oh, Hyeun-Seok;Kang, Kyung-Tae;Han, Gang-Uk;Kim, In-Soo;Jeong, Bo-Young;Moon, Soo-Kyung;Heu, Min-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.4
    • /
    • pp.464-469
    • /
    • 2006
  • This study was conducted to evaluate a knowledge on food components of muscle and adductor muscle of pearl oyster (Pinctada fucata martensii) as pearl processing byproducts. The concentrations of mercury and chromium as heavy metal were not detected in both pearl oyster muscle and adductor muscle, and those of cadmium and lead were 0.06 ppm and 0.11 ppm in only pearl oyster muscle, respectively. Thus, the heavy metal levels of pearl processing byproducts were below the reported safety limits. The volatile basic nitrogen (VBN) content and pH of pearl oyster muscle were 11.6 mg/100g and 6.31 and those of abductor muscle were 8.6 mg/100 g and 6.33, respectively. It was concluded that pearl oyster muscle and adductor muscle might not invoke health risk in using food resource. The contents of crude protein (16.5%) and total amino acid (15,691 mg/100 g) of adductor muscle were higher than those of muscle (11.2% and 10,131 mg/100 g) and oyster (12.1% and 11,213 mg/100 g) as a control. The contents of calcium and phosphorus were 95.4 mg/100 g and 116.0 mg/100 g in muscle, 75.2 mg/100g and 148.1 mg/100 g in adductor muscle, respectively. The calcium level based on phosphorus was a good ratio for absorbing calcium. The free amino acid contents and taste values were 635.5 mg/100 g and 40.2 in muscle, and 734.9 mg/100 g and 24.1 in adductor muscle, respectively, but that (882.8 mg/100 g and 40.2) of oyster was higher than those of pearl processing byproducts. Based on the results of physicochemical and nutritional properties, pearl oyster muscle and adductor muscle can be utilized as a food resource.

Monitoring of Heavy Metals in Fruits in Korea (유통 중인 과일류의 중금속 모니터링)

  • Lee, Jin-Ha;Seo, Ji-Woo;An, Eun-Sook;Kuk, Ju-Hee;Park, Ji-Won;Bae, Min-Seok;Park, Sang-Wook;Yoo, Myung-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.230-234
    • /
    • 2011
  • According to the Codex committee, the maximum allowable level for lead in fruits is 0.1 mg/kg. This survey was conducted as a surveillance program following the establishment of safety guideline for fruits in Korea. Concentrations of lead (Pb), cadmium (Cd), arsenic (As) and mercury (Hg) were measured in 927 samples using a ICP-MS and a mercury analyzer. The recoveries of microwave digestion method were 86.0-110.4% for Pb, 81.0-104.0% for Cd and 82.0-104.7% for As by standard addition method. The recovery of direct mercury analyzer was 106.5% for Hg. The average levels of Pb in ${\mu}g/kg$ were $10.0{\pm}12.8$ for apple, $8.8{\pm}10.9$ for pear, $4.1{\pm}4.4$ for persimmons, $14.9{\pm}12.3$ for mandarin, $7.1{\pm}6.5$ for orange, $3.1{\pm}3.3$ for banana, $8.8{\pm}8.9$ for kiwi, and $9.3{\pm}9.7$ for mango. The average levels of Cd in ${\mu}g/kg$ were $0.4{\pm}0.3$ for apple, $2.0{\pm}1.6$ for pear, $0.3{\pm}0.3$ for persimmon, $0.1{\pm}0.1$ for mandarin, $0.1{\pm}0.1$ for orange, $1.3{\pm}1.8$ for banana, $0.5{\pm}0.5$ for kiwi, and $0.7{\pm}0.6$ for mango. The average levels of As in ${\mu}g/kg$ were $2.0{\pm}2.1$ for apple, $1.2{\pm}1.3$ for pear, $1.5{\pm}1.2$ for persimmon, $0.8{\pm}0.3$ for mandarin, $1.5{\pm}0.5$ for orange, $1.8{\pm}1.2$ for banana, $1.6{\pm}1.5$ for kiwi, and $1.2{\pm}1.5$ for mango. The average levels of Hg in ${\mu}g/kg$ were $0.5{\pm}0.4$ for apple, $0.3{\pm}0.2$ for pear, $0.2{\pm}0.1$ for persimmon, $0.2{\pm}0.1$ for mandarin, $0.2{\pm}0.1$ for orange, $0.2{\pm}0.0$ for banana, $0.2{\pm}0.2$ for kiwi, and $0.6{\pm}0.2$ for mango. Based on the Korean public nutrition report 2005, these levels (or amounts) are calculated only at 0.17% for Pb, 0.013% for Cd and 0.006% for Hg of those presented in provisional tolerable weekly Intake (PTWI) which has been established by FAO/WHO. Therefore, the levels presented here are presumed to be adequately safe.

Variation of Cadmium and Zinc Content in Paddy Soil and Rice from the Janghang Smelter Area (장항제련소 지역의 토양과 수도체중 Cd 및 Zn 함량의 변화)

  • Kim, Seong-Jo;Baek, Seung-Hwa
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.2
    • /
    • pp.131-141
    • /
    • 1994
  • To investigate differences in Cd and Zn contents in paddy soils and rice plants polluted by aerial emissions from the Janghang smelter, soil samples in the different directions and at the surface (0-15cm) and subsurface (15-30cm) in 1982 and 1990, and rice plants at the corresponding sampling sites in 1990 were collected from the Janghang Smelter Area. Soil samples were extracted with $4M-HNO_3$ and plant samples were digested with a mixture of $HNO_3$ and $HClO_4$for analyzing by atomic absorption spectrophotometry. The Cd and Zn contents in soils ranged from 0.09 to 4.42 and from 16.0 to 959.5mg $kg^{-1}$, respectively. The average contents of Cd and Zn in 1990 were higher than those in 1982. The Cd and Zn contents of soils near the center of the smelter were higher than those of soils farther from the center and also decreased in the order of east > north-north east > north east > north. The Cd and Zn levels in surface soils were higher than those in subsurface soils. The contaminated areas of Cd and Zn were within 4km in the east, and within 3km in the north-north east and the north east. Metal contents in brawn rice were the lowest in rice plants. The Cd content of brown rice was one sixth of that in leaf blade and in leaf sheath. The Cd content of leaf blade, stem and panicle axis were significantly correlated with the levels of Zn, Cu and Pb in soils, and Zn content of stem was significantly correlated with the levels of Cu and Pb. The Cd and Zn content in brown rice ranged from 0.05 to 0.25mg $kg^{-1}$ and from 10.5 to 30.9㎎ $kg^{-1}$ in the smelter area, respectively.

  • PDF

Investigation into Air Pollution in Car Shipping Workshop in Pyeongtaek Port (자동차 선적작업장의 공기오염 실태조사)

  • Kim, Ji-Ho;Won, Jong-Uk;Kim, Chi-Nyon;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.1
    • /
    • pp.44-53
    • /
    • 2006
  • This study purposed to investigate air pollution in car shipping yards and, for this purpose, we selected an outdoor open-air yard and an indoor ramp into the ship and measured the concentrations of sulfur dioxide, nitrogen dioxide, carbon monoxide, PM10, PM2.5 and heavy metals in the air. The results of this study are as follows. No significant difference was observed in temperature and humidity between the outdoor and indoor workshop, and the average air flow was 0.52 m/s in the indoor workshop, which is higher than 0.19 m/s in the outdoor workshop(p<0.01). The average concentrations of sulfur dioxide, nitrogen dioxide, carbon monoxide, PM10 and PM2.5 according to workplace were 0.03 ppm(${\pm}0.01$), 0.03 ppm(${\pm}0.01$), 0.46 ppm(${\pm}0.22$), $39.44{\mu}g/m^3$(${\pm}2.45$) and $5.45{\mu}g/m^3$(${\pm}1.15$) respectively in the outdoor workshop, and 0.15 ppm(${\pm}0.05$), 0.22 ppm(${\pm}0.06$), 8.85 ppm(${\pm}3.35$), $236.39{\mu}g/m^3$(${\pm}58.21$) and $152.43{\mu}g/m^3$(${\pm}35.42$) respectively in the indoor workshop. Thus, the concentrations of gaseous substances in the indoor workshop were 4.9-19.2 times higher than those in the outdoor workshop, and the concentrations of fine dusts were 5.9-27.9 times higher(p<0.01). In addition, according to the result of investigating pollutant concentrations according to displacement and the number of car loaded when shipping gasoline cars into the ship, no significant relation between the number of cars loaded and pollutants was observed in shipping passenger cars, but the concentrations of nitrogen dioxide and carbon monoxide got somewhat higher with the increase of the number of cars loaded(p<0.05). In addition, the concentrations of nitrogen dioxide, carbon monoxide, PM10 and PM2.5 in the air were significantly higher when shipping recreational vehicles, the displacement of which is larger than passenger cars, than when shipping passenger cars(p<0.01). On the other hand, the average heavy metal concentrations of the air in indoor workshop were: lead $-0.05{\mu}g/m^3$(${\pm}0.10$); chromium $-0.90{\mu}g/m^3$(${\pm}0.18$); zinc $-0.38{\mu}g/m^3$(${\pm}0.24$); copper $-0.18{\mu}g/m^3$(${\pm}0.22$); and manganese and cadmium not detected. In addition, the complaining rates of 'asthma,' a major symptom of chronic respiratory diseases, were 18.5% and 22.5% respectively in indoor workers and outdoor workers. Thus the rate was somewhat higher in indoor workers but the difference was not statistically significant. The complaining rates of 'chronic cough' and 'chronic phlegm' were very low and little different between indoor and outdoor workers. The results of this study show that the reason for the higher air pollution in indoor than in outdoor workshop is incomplete combustion of fuel due to sudden start and over-speed when cars are driven inside the ship. In order to prevent high air pollution, efficient management measures should be taken including the observance of the optimal speed, the improvement of old ships and the installation of efficient ventilation system.

A Study on the Applicability of Soilremediation Technology for Contaminated Sediment in Agro-livestock Reservoir (농축산저수지 오염퇴적토의 토양정화기술에 대한 적용성 연구)

  • Jung, Jaeyun;Chang, Yoonyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.3
    • /
    • pp.157-181
    • /
    • 2020
  • Sediments from rivers, lakes and marine ports serve as end points for pollutants discharged into the water, and at the same time serve as sources of pollutants that are continuously released into the water. Until now, the contaminated sediments have been landfilled or dumped at sea. Landfilling, however, was expensive and dumping at sea was completely banned due to the London Convention. Therefore, this study applied contaminated sedimentation soil of 'Royal Palace Livestock Complex' as soil purification method. Soil remediation methods were applied to pretreatment, composting, soil washing, electrokinetics, and thermal desorption by selecting overseas application cases and domestically applicable application technologies. As a result of surveying the site for pollutant characteristics, Disolved Oxigen (DO), Suspended Solid (SS), Chemical Oxygen Demand (COD), Total Nitrogen (TN), and Total Phosphorus (TP) exceeded the discharged water quality standard, and especially SS, COD, TN, and TP exceeded the standard several tens to several hundred times. Soil showed high concentrations of copper and zinc, which promote the growth of pig feed, and cadmium exceeded 1 standard of Soil Environment Conservation Act. In the pretreatment technology, hydrocyclone was used for particle size separation, and the fine soil was separated by more than 80%. Composting was performed on organic and Total Petroleum Hydrocarbon (TPH) contaminated soils. TPH was treated within the standard of concern, and E. coli was analyzed to be high in organic matter, and the fertilizer specification was satisfied by applying the optimum composting conditions at 70℃, but the organic matter content was lower than the fertilizer specification. As a result of continuous washing test, Cd has 5 levels of residual material in fine soil. Cu and Zn were mostly composed of ion exchange properties (stage 1), carbonates (stage 2), and iron / manganese oxides (stage 3), which facilitate easy separation of contamination. As a result of applying acid dissolution and multi-stage washing step by step, hydrochloric acid, 1.0M, 1: 3, 200rpm, 60min was analyzed as the optimal washing factor. Most of the contaminated sediments were found to satisfy the Soil Environmental Conservation Act's standards. Therefore, as a result of the applicability test of this study, soil with high heavy metal contamination was used as aggregate by applying soil cleaning after pre-treatment. It was possible to verify that it was efficient to use organic and oil-contaminated soil as compost Maturity after exterminating contaminants and E. coli by applying composting.

Survey of Heavy Metal Contents of Circulating Agricultural Products in Korea (국내 유통 중인 농산물의 중금속 함량 모니터링)

  • Kim, Hee-Yun;Kim, Jae-In;Kim, Jin-Chul;Park, Ji-Eun;Lee, Kyung-Jin;Kim, Sung-Il;Oh, Jae-Ho;Jang, Young-Mi
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.238-244
    • /
    • 2009
  • This survey was conducted as a surveillance program following the establishment of safety guidelines for agricultural products in Korea. Concentrations of arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) were measured in 421 samples using a mercury analyzer or ICP-MS. The average levels of Pb in mg/kg were 0.021 for rice, 0.020 for corn, 0.028 for soybeans, 0.034 for red beans, 0.025 for sweet potatoes, 0.021 for potatoes, 0.019 for Chinese cabbage, 0.031 for spinach, 0.021 for Welsh onions, and 0.011 for radishes. The average levels of Cd in mg/kg were 0.021 for rice, 0.002 for corn, 0.020 for soybeans, 0.006 for red beans, 0.008 for sweet potatoes, 0.011 for potatoes, 0.007 for Chinese cabbage, 0.035 for spinach, 0.006 for Welsh onions, and, 0.006 for radishes. The average levels of As in mg/kg were 0.103 for rice, 0.005 for corn, 0.007 for soybeans, 0.005 for red beans, 0.005 for sweet potatoes, 0.004 for potatoes, 0.007 for Chinese cabbage, 0.015 for spinach, 0.009 for Welsh onions and, 0.006 for radishes. Finally, the average levels of Hg in ${\mu}g/kg$ were 2.3 for rice, 0.2 for corn, 0.6 for soybeans, 1.4 for red beans, 0.1 for sweet potatoes, 0.3 for potatoes, 0.5 Chinese cabbage, 2.1 for spinach, 0.5 for Welsh onions, and 0.2 for radishes. Based on the Korean public nutrition report 2005, these levels (or amounts) are calculated only at 2.6% for Pb, 8.7% for Cd, 1.2% for Hg of those presented in provisional tolerable weekly intake (PTWI) which has been established by FAO/WHO. Therefore, the levels presented here are presumed to be adequately safe.

A study on the concentration of trace metal elements in whole blood of the women in reproductive ages in urban and rural area (도시 및 농촌지역 가임연령 여성들의 혈중 미량금속원소의 함량에 관한 조사)

  • Jun, Jin-Ho
    • Journal of Preventive Medicine and Public Health
    • /
    • v.17 no.1
    • /
    • pp.95-106
    • /
    • 1984
  • To acquire the essential basic data to the establishment of control measure for the hazardous health effect that could be caused by harmful metals, the author measured the concentrations of trace metals in whole blood of women of $20{\sim}39$ years old living in urban and rural area using atomic absorption spectrophotometer. The summarized results were as follows; 1. The mean concentration of zinc in whole blood was $10.69{\pm}8.07{\mu}g/ml$ in rural area. The frequency distribution by zinc concentration level was nearly L-type and the cumulative frequency distribution was showed bimodal type in both area. 2. The mean iron concentration in whole blood was $323.09{\pm}87.15{\mu}g/ml$ and $322.07{\pm}104.74{\mu}g/ml$ in urban and rural area, respectively. The frequency distribution was similar to normal distribution type in both area, but the cumulative distribution was unimodal type in urban area and bimodal type in rural area. 3. The mean magnesium concentration was $41.08{\pm}19.58{\mu}g/ml$ and $40.28{\pm}16.82{\mu}g/ml$ in the area, respectively. The frequency distribution type had skewness to the right and the cumulative frequency distribution was unimodal type in both area. 4. The mean copper concentration was $1.417{\pm}0.761{\mu}g/ml$ and $1.375{\pm}0.743{\mu}g/ml$ in the area, respectively. The frequency distribution type had skewness to the right and the cumulative frequency distribution was bimodal type in both area. 5. The mean manganese concentration was $0.079{\pm}0.039{\mu}g/ml$ and $0.07{\pm}0.058{\mu}g/ml$ in the area, respectively. The frequency distribution type had skewness to the right in both area but slight irregular in rural area and the cumulative distribution was unimodal and bimodal type in urban and rural area, respectively. 6. The mean cadmium concentration in whole blood was $0.031{\pm}0.026{\mu}g/ml$ in urban and $0.028{\pm}0.023{\mu}g/ml$ in rural area. The frequency distribution type had skewness to the right and cumulative frequency distribution was bimodal type in both area.

  • PDF

Transfer Factor of Heavy Metals from Agricultural Soil to Agricultural Products (농작물 재배지 토양 내 비소, 납 및 카드뮴의 농산물로의 전이계수 산출)

  • Kim, Ji-Young;Lee, Ji-Ho;Kunhikrishnan, Anitha;Kang, Dae-Won;Kim, Min-Ji;Yoo, Ji-Hyock;Kim, Doo Ho;Lee, Young-Ja;Kim, Won Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.4
    • /
    • pp.300-307
    • /
    • 2012
  • BACKGROUND: The Transfer Factor (TF) of heavy metals from soil to plant is important, because TF is an indicator of heavy metal in soils and a factor that quantifies bioavailability of heavy metals to agricultural products. This study was conducted to investigate the transfer ability of Arsenic (As), Cadmium (Cd), and Lead (Pb) from soil to agricultural products. METHODS AND RESULTS: We investigated heavy metals (As, Cd and Pb) concentrations in 9 agricultural products (rice, barely, corn, pulse, lettuce, pumpkin, apple, pear, tangerin) and soil. TF of agricultural products was evaluated based on total and HCl-extractable soil concentration of As, Cd, and Pb. Regression analysis was used to predict the relationship of total and HCl-extractable concentration with agricultural product contents of As, Cd, and Pb. The result showed that TF was investigated average 0.006~0.309 (As), 0.002~6.185 (Cd), 0.003~0.602 (Pb). The mean TF value was the highest as rice 0.309 in As, lettuce 6.185, pear 0.717, rice 0.308 in Cd, lettuce 0.602, pumpkin 0.536 in Pb which were dependent on the vegetable species and cereal is showed higher than fruit-vegetables in As. CONCLUSION(S): Soil HCl-extractable concentration of As, Cd, and Pb had the larger effects on thier contents in agricultural products than total soil concentrations. We suggests that TF are served as influential factor on the prediction of uptake. Further study for uptake and accumulation mechanism of toxic metals by agricultural products will be required to assess the human health risk and need TF of more agricultural products.