• Title/Summary/Keyword: cache performance model

Search Result 57, Processing Time 0.023 seconds

Data Communication Prediction Model in Multiprocessors based on Robust Estimation (로버스트 추정을 이용한 다중 프로세서에서의 데이터 통신 예측 모델)

  • Jun Janghwan;Lee Kangwoo
    • The KIPS Transactions:PartA
    • /
    • v.12A no.3 s.93
    • /
    • pp.243-252
    • /
    • 2005
  • This paper introduces a noble modeling technique to build data communication prediction models in multiprocessors, using Least-Squares and Robust Estimation methods. A set of sample communication rates are collected by using a few small input data sets into workload programs. By applying estimation methods to these samples, we can build analytic models that precisely estimate communication rates for huge input data sets. The primary advantage is that, since the models depend only on data set size not on the specifications of target systems or workloads, they can be utilized to various systems and applications. In addition, the fact that the algorithmic behavioral characteristics of workloads are reflected into the models entitles them to model diverse other performance metrics. In this paper, we built models for cache miss rates which are the main causes of data communication in shared memory multiprocessor systems. The results present excellent prediction error rates; below $1\%$ for five cases out of 12, and about $3\%$ for the rest cases.

An Efficient P2P Service using Distributed Caches in MANETs (모바일 애드-혹 망에서 분산 캐시를 이용한 효율적인 P2P 서비스 방법)

  • Oh, Sun-Jin;Lee, Young-Dae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.165-171
    • /
    • 2009
  • With rapid growth of Mobile Ad-Hoc network(MANET) and P2P service technologies, many attempts for integration of MANET and P2P service and development of such applications are actively introduced recently. The implementation of stable P2P service, however, is very difficult challenge because of the high mobility of mobile users in MANET. In this paper, we propose an efficient mobile P2P service, which shares and manages multimedia data files efficiently in mobile environment, uses distributed caches to store files considering their popularities in order to achieve high performance. The performance of proposed P2P service is evaluated by an analytic model and compared with those of existing DHT based P2P service in peer-to-peer network.

  • PDF

An Efficient Peer-to-Peer Web Caching Model with the Dynamic Participation of Peers (네트워크 동적 참여 기반의 효율적인 피어-투-피어 웹 캐슁 모델)

  • Ryu Young-Suk;Yang Sung-Bong
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.6
    • /
    • pp.705-715
    • /
    • 2005
  • A peer-to-peer web caching has been studied recently as it can reduce the traffic converged on the server side and can support the traditional web caching model. Although the peer-to-peer web caching has the merit of having additional cache space from the local caches of peers without additional infrastructure, several constraints such as dynamic participation and local caching strategy caused by the autonomy of peers in peer-to-peer networks nay limit the performance of the peer-to-peer web caching. To overcome these limitations, we propose an efficient directory-based peer-to-peer web caching system under dynamic participation of peers. In the proposed caching system, we present new peer selection and replica management schemes by introducing the concept of the object lifetime in P2P networks. We evaluate the effectiveness of the proposed system through trace-driven simulations with a web log dataset. Simulation results show that the proposed system has higher accuracy and fewer redirection failures than the conventional directory-based P2P web caching system in feasible peer-to-peer networks.

Content Distribution for 5G Systems Based on Distributed Cloud Service Network Architecture

  • Jiang, Lirong;Feng, Gang;Qin, Shuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4268-4290
    • /
    • 2015
  • Future mobile communications face enormous challenges as traditional voice services are replaced with increasing mobile multimedia and data services. To address the vast data traffic volume and the requirement of user Quality of Experience (QoE) in the next generation mobile networks, it is imperative to develop efficient content distribution technique, aiming at significantly reducing redundant data transmissions and improving content delivery performance. On the other hand, in recent years cloud computing as a promising new content-centric paradigm is exploited to fulfil the multimedia requirements by provisioning data and computing resources on demand. In this paper, we propose a cooperative caching framework which implements State based Content Distribution (SCD) algorithm for future mobile networks. In our proposed framework, cloud service providers deploy a plurality of cloudlets in the network forming a Distributed Cloud Service Network (DCSN), and pre-allocate content services in local cloudlets to avoid redundant content transmissions. We use content popularity and content state which is determined by content requests, editorial updates and new arrivals to formulate a content distribution optimization model. Data contents are deployed in local cloudlets according to the optimal solution to achieve the lowest average content delivery latency. We use simulation experiments to validate the effectiveness of our proposed framework. Numerical results show that the proposed framework can significantly improve content cache hit rate, reduce content delivery latency and outbound traffic volume in comparison with known existing caching strategies.

Speed-up Techniques for High-Resolution Grid Data Processing in the Early Warning System for Agrometeorological Disaster (농업기상재해 조기경보시스템에서의 고해상도 격자형 자료의 처리 속도 향상 기법)

  • Park, J.H.;Shin, Y.S.;Kim, S.K.;Kang, W.S.;Han, Y.K.;Kim, J.H.;Kim, D.J.;Kim, S.O.;Shim, K.M.;Park, E.W.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.153-163
    • /
    • 2017
  • The objective of this study is to enhance the model's speed of estimating weather variables (e.g., minimum/maximum temperature, sunshine hour, PRISM (Parameter-elevation Regression on Independent Slopes Model) based precipitation), which are applied to the Agrometeorological Early Warning System (http://www.agmet.kr). The current process of weather estimation is operated on high-performance multi-core CPUs that have 8 physical cores and 16 logical threads. Nonetheless, the server is not even dedicated to the handling of a single county, indicating that very high overhead is involved in calculating the 10 counties of the Seomjin River Basin. In order to reduce such overhead, several cache and parallelization techniques were used to measure the performance and to check the applicability. Results are as follows: (1) for simple calculations such as Growing Degree Days accumulation, the time required for Input and Output (I/O) is significantly greater than that for calculation, suggesting the need of a technique which reduces disk I/O bottlenecks; (2) when there are many I/O, it is advantageous to distribute them on several servers. However, each server must have a cache for input data so that it does not compete for the same resource; and (3) GPU-based parallel processing method is most suitable for models such as PRISM with large computation loads.

A Dynamic Transaction Routing Algorithm with Primary Copy Authority (주사본 권한을 이용한 동적 트랜잭션 분배 알고리즘)

  • Kim, Ki-Hyung;Cho, Hang-Rae;Nam, Young-Hwan
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1067-1076
    • /
    • 2003
  • Database sharing system (DSS) refers to a system for high performance transaction processing. In DSS, the processing nodes are locally coupled via a high speed network and share a common database at the disk level. Each node has a local memory and a separate copy of operating system. To reduce the number of disk accesses, the node caches database pages in its local memory buffer. In this paper, we propose a dynamic transaction routing algorithm to balance the load of each node in the DSS. The proposed algorithm is novel in the sense that it can support node-specific locality of reference by utilizing the primary copy authority assigned to each node; hence, it can achieve better cache hit ratios and thus fewer disk I/Os. Furthermore, the proposed algorithm avoids a specific node being overloaded by considering the current workload of each node. To evaluate the performance of the proposed algorithm, we develop a simulation model of the DSS, and then analyze the simulation results. The results show that the proposed algorithm outperforms the existing algorithms in the transaction processing rate. Especially the proposed algorithm shows better performance when the number of concurrently executed transactions is high and the data page access patterns of the transactions are not equally distributed.

Design and Implementation of Asynchronous Memory for Pipelined Bus (파이프라인 방식의 버스를 위한 비 동기식 주 기억장치의 설계 및 구현)

  • Hahn, Woo-Jong;Kim, Soo-Won
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.11
    • /
    • pp.45-52
    • /
    • 1994
  • In recent days low cost, high performance microprocessors have led to construction of medium scale shared memory multiprocessor systems with shared bus. Such multiprocessor systems are heavily influenced by the structures of memory systems and memory systems become more important factor in design space as microprocessors are getting faster. Even though local cache memories are very common for such systems, the latency on access to the shared memory limits throughput and scalability. There have been many researches on the memory structure for multiprocessor systems. In this paper, an asynchronous memory architecture is proposed to utilize the bandwith of system bus effectively as well as to provide flexibility of implementation. The effect of the proposed architecture if shown by simulation. We choose, as our model of the shared bus is HiPi+Bus which is designed by ETRI to meet the requirements of the High-Speed Midrange Computer System. The simulation is done by using Verilog hardware decription language. With this simulation, it is explored that the proposed asynchronous memory architecture keeps the utilization of system bus low enough to provide better throughput and scalibility. The implementation trade-offs are also described in this paper. The asynchronous memory is implemented and tested under the prototype testing environment by using test program. This intensive test has validated the operation of the proposed architecture.

  • PDF