• 제목/요약/키워드: cables

검색결과 1,569건 처리시간 0.029초

배전케이블 진단결과와 교류절연파괴강도의 상관성 (Relation between Dielectric Diagnosis and ACBD Strength in URD Cables)

  • 한재홍;김주용;김동명;이병성;정년호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.484-487
    • /
    • 2000
  • This study is for assessing a reliability of diagnostic device through comparing diagnostic results to ACDB strength. The dielectric diagnosis using IRC (isothermal relaxation current) measurement was carried on service-aged cables. From this study, there was little correlation between dielectric diagnosis and ACBD strength in long distance cables. But the correlation between them showed in short distance below 200 m. Therefore, it is desirable to diagnose the URD cables in short distance.

  • PDF

원자력발전소 케이블의 건전성 평가방법 및 수명관리방안에 관한 고찰 (A Study on Integrity Assessment and Lifetime Management of Cables in the Containment of the Nuclear Power Plant)

  • 이창수;최미령;진태은;임우상;한성흠
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기설비전문위원
    • /
    • pp.73-75
    • /
    • 2005
  • A number of the power cables arc installed in the containment of the nuclear power plant. According to the IEEE Standard 835, the calculation of the temperature rise shows the operation possibility of power cables in the containment. In this paper, we expect the integrity of the power cables by using the calculation of the temperature rise and the development of the lifetime extension of the cables.

  • PDF

Application of magnetoelastic stress sensors in large steel cables

  • Wang, Guodun;Wang, Ming L.;Zhao, Yang;Chen, Yong;Sun, Bingnan
    • Smart Structures and Systems
    • /
    • 제2권2호
    • /
    • pp.155-169
    • /
    • 2006
  • In this paper, the application of magnetoelasticity in static tension monitoring for large steel cables is discussed. Magnetoelastic (EM) stress sensors make contact-free tension monitoring possible for hanger cables and post-tensioned cables on suspension and cable-stayed bridges. By quantifying the correlation of magnetic relative permeability with tension and temperature, the EM sensors inspect the load levels in the steel cables. Cable tension monitoring on Qiangjiang (QJ) 4th Bridge demonstrates the reliability of the EM sensors.

Dynamic response of cable-stayed bridges subjected to sudden failure of stays - the 2D problem

  • Raftoyiannis, I.G.;Konstantakopoulos, T.G.;Michaltsos, G.T.
    • Coupled systems mechanics
    • /
    • 제3권4호
    • /
    • pp.345-365
    • /
    • 2014
  • A significant problem met in engineering practice when designing cable-stayed bridges is the failure of cables. Many different factors can lead to sudden failure of cables, such as corrosion, continuous friction or abrasion, progressive and extended crevice created by fatigue and finally an explosion caused by sabotage or accident, are some of the causes that can lead to the sudden failure of one or more cables. This paper deals with the sudden failure of cables in a special form of cable-stayed bridges with a single line of cables anchored at the central axis of the deck's cross-section. The analysis is carried out by the modal superposition technique where an analytical method developed by the authors in a previous work has been employed.

Fatigue characteristics of distributed sensing cables under low cycle elongation

  • Zhang, Dan;Wang, Jiacheng;li, Bo;Shi, Bin
    • Smart Structures and Systems
    • /
    • 제18권6호
    • /
    • pp.1203-1215
    • /
    • 2016
  • When strain sensing cables are under long-term stress and cyclic loading, creep may occur in the jacket material and each layer of the cable structure may slide relative to other layers, causing fatigue in the cables. This study proposes a device for testing the fatigue characteristics of three types of cables operating under different conditions to establish a decay model for observing the patterns of strain decay. The fatigue characteristics of cables encased in polyurethane (PU), GFRP-reinforced, and wire rope-reinforced jackets were compared. The findings are outlined as follows. The cable strain decayed exponentially, and the decay process involved quick decay, slow decay, and stabilization stages. Moreover, the strain decay increased with the initial strain and tensile frequency. The shorter the unstrained period was, the more similar the initial strain levels of the strain decay curves were to the stabilized strain levels of the first cyclic elongation. As the unstrained period increased, the initial strain levels of the strain decay curves approached those of the first cyclic elongation. The tested sensing cables differed in the amount and rate of strain decay. The wire rope-reinforced cable exhibited the smallest amount and rate of decay, whereas the GFRP-reinforced cable demonstrated the largest.

Dynamic characteristics of cable vibrations in a steel cable-stayed bridge using nonlinear enhanced MECS approach

  • Wu, Qingxiong;Takahashi, Kazuo;Chen, Baochun
    • Structural Engineering and Mechanics
    • /
    • 제30권1호
    • /
    • pp.37-66
    • /
    • 2008
  • This paper focuses on the nonlinear vibrations of stay cables and evaluates the dynamic characteristics of stay cables by using the nonlinear enhanced MECS approach and the approximate approach. The nonlinear enhanced MECS approach is that both the girder-tower vibrations and the cable vibrations including parametric cable vibrations are simultaneously considered in the numerical analysis of cable-stayed bridges. Cable finite element method is used to simulate the responses including the parametric vibrations of stay cables. The approximate approach is based on the assumption that cable vibrations have a small effect on girder-tower vibrations, and analyzes the local cable vibrations after obtaining the girder-tower responses. Under the periodic excitations or the moderate ground motion, the differences of the responses of stay cables between these two approaches are evaluated in detail. The effect of cable vibrations on the girder and towers are also discussed. As a result, the dynamic characteristics of the parametric vibrations in stay cables can be evaluated by using the approximate approach or the nonlinear enhanced MECS approach. Since the different axial force fluctuant of stay cables in both ends of one girder causes the difference response values between two approach, it had better use the nonlinear enhanced MECS approach to perform the dynamic analyses of cable-stayed bridges.

제어케이블의 설치기법 개선에 의한 배전자동화용 개폐기의 EMC 성능 향상 (EMC Performance Improvement of Distribution Automation Circuit-Breaker by Modified Installing Method of Control Cable)

  • 김언석;김재철
    • 조명전기설비학회논문지
    • /
    • 제17권5호
    • /
    • pp.60-67
    • /
    • 2003
  • 본 논문에서는 개폐기의 EMC 성능 개선방안을 연구하였다. 개폐기와 제어함은 멀티 제어 케이블로 연결되었다. 또한 각 장치에는 많은 제어 케이블이 설치되었다. 이들 제어 케이블은 전자부품과 직접 연결된다. 그러므로 제어 케이블은 EMC 성능 향상에 중요한 요소이다. EMC 성능 개선방안으로 제어 케이블과 나란히 병렬접지도체 (Parallel Grinding Conductor, PGC) 설치를 제안하였다. 또한 개폐기 내에 설치된 전압 변성기의 2차 케이력은 차폐 케이블을 사용하고, 차폐의 양단을 접지하는 것을 제안하였다. 개선방안 적용 후 개폐기의 EMC성능이 향상되었음을 확인하였다.

Wind-tunnel study of wake galloping of parallel cables on cable-stayed bridges and its suppression

  • Li, Yongle;Wu, Mengxue;Chen, Xinzhong;Wang, Tao;Liao, Haili
    • Wind and Structures
    • /
    • 제16권3호
    • /
    • pp.249-261
    • /
    • 2013
  • Flexible stay cables on cable-stayed bridges are three-dimensional. They sag and flex in the complex wind environment, which is a different situation to ideal rigid cylinders in two-dimensional wind flow. Aerodynamic interference and the response characteristics of wake galloping of full-scale parallel cables are potentially different due to three-dimensional flows around cables. This study presents a comprehensive wind tunnel investigation of wake galloping of parallel stay cables using three-dimensional aeroelastic cable models. The wind tunnel study focuses on the large spacing instability range, addressing the effects of cable separation, wind yaw angle, and wind angle of attack on wake galloping response. To investigate the effectiveness of vibration suppression measures, wind tunnel studies on the transversely connected cable systems for two types of connections (flexibility and rigidity) at two positions (mid-span and quarter-span) were also conducted. This experimental study provides useful insights for better understanding the characteristics of wake galloping that will help in establishing a guideline for the wind-resistant design of the cable system on cable-stayed bridges.

다회선 지중송전 케이블에서의 EMTP를 이용한 시스 순환전류 분석 (Analysis of Sheath Circulating Current on Multi-underground Transmission Cables using EMTP)

  • 하체웅;김정년;이수길;김동욱;이종범;강지원
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권10호
    • /
    • pp.510-517
    • /
    • 2002
  • The use of underground transmission cables has continuously increased in densely inhabited urban and suburban area. Due to a increasing demand of underground cables, two or more circuits are installed in parallel for several kilometers. It, however, has not been realized that the sheath circulating current is generated in the system where a large number of cables are laid in the same route. In this paper, sheath circulating current is analyzed by the EMTP and compared with the measured values. Unbalance arrangement of cables or cross-bonding length causes a significant effect on the magnitude of the sheath current. Sheath circulating current could be greatly reduced by the symmetrical configuration of cables and installation of the impedance reduction system. Especially, with the impedance system of 1Ω installed, the sheath circulating current is reduced by 85.7%.

역해석기법을 이용한 현수교 행어케이블 장력 추정 (Back Analysis for Estimating Tension Force on Hanger Cables)

  • 김남식;빈정민;장성진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.894-901
    • /
    • 2006
  • In general, the tension fores of hanger cable in suspension bridges play an important role in evaluating the bridge state. The vibration method, as a conventional one, has been widely applied to estimate the tension fores by using the measured frequencies on hanger cables. However, the vibration method is not applicable to short hanger cables because the frequency of short cables is severely sensitive to the flexural rigidity. Thus, in this study, the tension forces of short hanger cables, of which the length is shorter than 10meters, were estimated through back analysis of the cable frequencies measured from Gwang-An suspension bridge in Korea. Direct approach to rock analysis is adopted using the univariate method among the direct search methods as an optimization technique. The univariate method is able to search the optimal tension forces without regard to the initial ones and has a rapid convergence rate. To verify the feasibility of back analysis, the results from back analysis and vibration method are compared with the design tension forces. From the comparison, it can be inferred that back analysis results are more reasonable agreement with the design tension forces of short hanger cable. Therefore, it is concluded that back analysis applied in this study is an appropriate tool for estimating tension forces of short hanger cables.

  • PDF