• Title/Summary/Keyword: cable-supported structure

Search Result 39, Processing Time 0.024 seconds

A Study on the Support Conditions of Cable-stayed Bridge System (사장교계의 지지조건에 대한 연구)

  • An, Zu-Og;Yoon, Young-Man
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.3 s.6
    • /
    • pp.119-125
    • /
    • 2002
  • The objective of this study is to evaluate elastic modulus of bridge-axis direction for optimum structure system in the cable-stayed bridge design. In numerical example of this study, a slight change in axis direction elastic modulus causes major modifications of the bridge characteristics when it is $1\times10^4$ tonf/m/bearing or less. Therefore, the elastic modulus was set at this lower limit of $1\times10^4$ tonf/m/bearing where the strength of the entire bridge system is still determined by girder strength and the entire system is insensitive to variations in elastic modulus. Besides, cable-stayed bridge with freely supported girders have slightly longer vibration periods in the horizontal direction for earthquake forces.

Dynamic performance of girder bridges with explosion-proof and aseismic system

  • Wang, Jingyu;Yuan, Wancheng;Wu, Xun;Wei, Kai
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.419-426
    • /
    • 2017
  • Recently, the transportation of dangerous explosive goods is increasing, which makes vehicle blasting accidents a potential threat for the safety of bridge structures. In addition, blasting accidents happen more easily when earthquake occurs. Excessive dynamic response of bridges under extreme loads may cause local member damage, serviceability issues, or even failure of the whole structure. In this paper, a new explosion-proof and aseismic system is proposed including cable support damping bearing and steel-fiber reinforced concrete based on the existing researches. Then, considering one 40m-span simply supported concrete T-bridge as the prototype, through scale model test and numerical simulation, the dynamic response of the bridge under three conditions including only earthquake, only blast load and the combination of the two extreme loads is obtained and the applicability of this explosion-proof and aseismic system is explored. Results of the study show that this explosion-proof and aseismic system has good adaptability to seism and blast load at different level. The reducing vibration isolation efficiency of cable support damping bearing is pretty high. Increasing cables does not affect the good shock-absorption performance of the original bearing. The new system is good at shock absorption and displacement limitation. It works well in reducing the vertical dynamic response of beam body, and could limit the relative displacement between main girder and capping beam in different orientation so as to solve the problem of beam falling. The study also shows that the enhancement of steel fibers in concrete could significantly improve the blast resistance of main beam. Results of this paper can be used in the process of antiknock design, and provide strong theoretical basis for comprehensive protection and support of girder bridges.

Determination of flutter derivatives by stochastic subspace identification technique

  • Qin, Xian-Rong;Gu, Ming
    • Wind and Structures
    • /
    • v.7 no.3
    • /
    • pp.173-186
    • /
    • 2004
  • Flutter derivatives provide the basis of predicting the critical wind speed in flutter and buffeting analysis of long-span cable-supported bridges. In this paper, one popular stochastic system identification technique, covariance-driven Stochastic Subspace Identification(SSI in short), is firstly presented for estimation of the flutter derivatives of bridge decks from their random responses in turbulent flow. Secondly, wind tunnel tests of a streamlined thin plate model and a ${\Pi}$ type blunt bridge section model are conducted in turbulent flow and the flutter derivatives are determined by SSI. The flutter derivatives of the thin plate model identified by SSI are very comparable to those identified by the unifying least-square method and Theodorson's theoretical values. As to the ${\Pi}$ type section model, the effect of turbulence on aerodynamic damping seems to be somewhat notable, therefore perhaps the wind tunnel tests for flutter derivative estimation of those models with similar blunt sections should be conducted in turbulent flow.

A Study on the Effects of Wind Load of Membrane Roof Structures according to External Form (외형에 따른 지붕 막구조물의 풍하중 영향 고찰)

  • Ko, Kwang-Woong;Jang, Myung-Ho;Lee, Jang-Bog;Sur, Sam-Yeol
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.15-18
    • /
    • 2008
  • A Spatial structure, having a curvature with a curved surface, is an extremely efficient mechanical creation considering the external load. It is resisted the out-of-plane direction load by in-plane forces using the structure's curvature. Spatial Structures include many types of structures, such as: space frames or grids; cable-and-strut and tensegrity; air-supported or air-inflated; self-erecting and deployable; cable net; tension membrane; lightweight geodesic domes; folded plates; and thin shells. Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. It is very important that effects by wind load than seismic and dead load. And, wind load is different by surrounding and shape of building In this study, we analyze the results of design wind load and wind tunnel tests about the 2 stadiums which are constructed on sensitive sites by effect of wind loads.

  • PDF

Tip Deflection Analysis of Mobile Habor Crane Supported by Cable and Elastic Bar (케이블과 탄성보로 지지되는 모바일 하버 크레인의 끝단 처짐량 분석)

  • Hwang, Soon-Wook;Han, Ki-Chul;Choi, Eun-Ho;Cho, Jin-Rae;Lim, O-Kaung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.283-288
    • /
    • 2010
  • Mobile harbor is characterized by the lightweight compact structure when compared to the conventional above-ground port container crane. A new concept RORI crane system, which was devised for mobile harbor to satisfy the compactness and light weightness, not only can load/unload containers with high speed on sea but can be completely folded at maneuvering mode. This study is concerned with the tip deflection of the horizontal boom of mobile harbor at container loading operation. Both the theoretical method utilizing the Castigliano's theorem and the numerical approach by finite element method are employed, and the reliability of the latter approach is verified through the comparison with the theoretical results. And then, the effect of the initial cable tension on the tip deflection is parametrically examined by the finite element analysis.

A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification

  • Ye, X.W.;Ni, Y.Q.;Wai, T.T.;Wong, K.Y.;Zhang, X.M.;Xu, F.
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.363-379
    • /
    • 2013
  • Dynamic displacement of structures is an important index for in-service structural condition and behavior assessment, but accurate measurement of structural displacement for large-scale civil structures such as long-span bridges still remains as a challenging task. In this paper, a vision-based dynamic displacement measurement system with the use of digital image processing technology is developed, which is featured by its distinctive characteristics in non-contact, long-distance, and high-precision structural displacement measurement. The hardware of this system is mainly composed of a high-resolution industrial CCD (charge-coupled-device) digital camera and an extended-range zoom lens. Through continuously tracing and identifying a target on the structure, the structural displacement is derived through cross-correlation analysis between the predefined pattern and the captured digital images with the aid of a pattern matching algorithm. To validate the developed system, MTS tests of sinusoidal motions under different vibration frequencies and amplitudes and shaking table tests with different excitations (the El-Centro earthquake wave and a sinusoidal motion) are carried out. Additionally, in-situ verification experiments are performed to measure the mid-span vertical displacement of the suspension Tsing Ma Bridge in the operational condition and the cable-stayed Stonecutters Bridge during loading tests. The obtained results show that the developed system exhibits an excellent capability in real-time measurement of structural displacement and can serve as a good complement to the traditional sensors.

Rapid assessment of suspension bridge deformation under concentrated live load considering main beam stiffness: An analytical method

  • Wen-ming Zhang;Jia-qi Chang;Xing-hang Shen;Xiao-fan Lu;Tian-cheng Liu
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.53-65
    • /
    • 2023
  • With the gradual implementation of long-span suspension bridges into high-speed railway operations, the main beam's bending stiffness contribution to the live load response permanently grows. Since another critical control parameter of railway suspension bridges is the beam-end rotation angle, it should not be ignored by treating the main beam deflection as the only deformation response. To this end, the current study refines the existing method of the main cable shape and simply supported beam bending moment analogy. The bending stiffness of the main beam is considered, and the main beam's analytical expressions of deflection and rotation angle in the whole span are obtained using the cable-beam deformation coordination relationship. Taking a railway suspension bridge as an example, the effectiveness and accuracy of the proposed analytical method are verified by the finite element method (FEM). Comparison of the results by FEM and the analytical method ignoring the main beam stiffness revealed that the bending stiffness of the main beam strongly contributed to the live load response. Under the same live load, as the main beam stiffness increases, the overall deformation of the structure decreases, and the reduction is particularly noticeable at locations with original larger deformations. When the main beam stiffness is increased to a certain extent, the stiffening effect is no longer pronounced.

Design and Implementation of Upstream Channel Allocation Algorithm for DOCSIS 3.0 MAC (채널-결합 방식을 사용하는 상향대역 할당 알고리즘 성능 검증을 위한 DOCSIS 3.0 시뮬레이터 설계 및 구현)

  • Kim, Tae-Kyoon;Ra, Sung-Woong
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.21-27
    • /
    • 2008
  • In this paper, we design and implement the upstream packet bandwidth allocation algorithm on OPNET-based DOCSIS 3.0 simulator including channel-bonding CM (Cable Modem)s. Previous DOCSIS CM could not support channel bonding, it has problem in upstream bandwidth allocation and determine the contention area. The proposed upstream bandwidth allocation algorithm has been improved the queuing time and success rate. For the simulation, we design the MAC frame structure with channel bonding supported CM and not. And then, this paper design and implement the CMTS node model, CM node model, CMTS process model, and CM process model.

  • PDF

Buffeting-induced stresses in a long suspension bridge: structural health monitoring oriented stress analysis

  • Liu, T.T.;Xu, Y.L.;Zhang, W.S.;Wong, K.Y.;Zhou, H.J.;Chan, K.W.Y.
    • Wind and Structures
    • /
    • v.12 no.6
    • /
    • pp.479-504
    • /
    • 2009
  • Structural health monitoring (SHM) systems have been recently embraced in long span cable-supported bridges, in which buffeting-induced stress monitoring is one of the tasks to ensure the safety of the bridge under strong winds. In line with this task, this paper presents a SHM-oriented finite element model (FEM) for the Tsing Ma suspension bridge in Hong Kong so that stresses/strains in important bridge components can be directly computed and compared with measured ones. A numerical procedure for buffeting induced stress analysis of the bridge based on the established FEM is then presented. Significant improvements of the present procedure are that the effects of the spatial distribution of both buffeting forces and self-excited forces on the bridge deck structure are taken into account and the local structural behaviour linked to strain/stress, which is prone to cause local damage, are estimated directly. The field measurement data including wind, acceleration and stress recorded by the wind and structural health monitoring system (WASHMS) installed on the bridge during Typhoon York are analyzed and compared with the numerical results. The results show that the proposed procedure has advantages over the typical equivalent beam finite element models.