• Title/Summary/Keyword: cable-stayed

Search Result 619, Processing Time 0.026 seconds

Dynamic Characteristics of a Cable-stayed Bridge Using Global Navigation Satellite System (GNSS를 이용한 사장교의 동특성 평가)

  • Park, Jong Chil;Gil, Heung Bae;Kang, Sang Gyu;Lim, Chae Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.375-382
    • /
    • 2010
  • This paper presents the extraction of natural frequencies and mode shapes of a cable-stayed bridge using data acquired from GNSS. The response signals of 6 GNSS measuring points installed at the Seohae cable-stayed bridge are used for analysis of dynamic characteristics. Using normalization process and a third order Butterworth filter for the measured signals, the related pass band's signals have been isolated. Then, the acceleration data by double differentiation for these signals are obtained. Total five natural frequencies have been extracted by the fast Fourier transform and compared to the results of different studies. For the acceleration obtained from GNSS signals, the mode shapes of the bridge have been successfully extracted by TDD technique.

Vibration suppression analysis of a long-span cable-stayed bridge based on earthquake-wind-traffic-bridge coupled system

  • Xinfeng Yin;Yong Liu;Wanli Yan;Yang Liu;Zhou Huang
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.379-387
    • /
    • 2023
  • Wind and earthquake loads may cause strong vibrations in large-span cable-stayed bridges, leading to the inability of the bridge to operate normally. An improved Pounding Tuned Mass Damper (PTMD) system was designed to improve the safety of the large-span cable-stayed bridge. The vibration control effect of the improved PTMD system on the large-span cablestayed bridge under the combined action of earthquake-wind-traffic was studied. Furthermore, the impact of different parameters on the vibration suppression performance of the improved PTMD system was analyzed. The numerical results indicate that the PTMD system is very effective in suppressing the displacements of the bridge caused by both the traffic-wind coupling and traffic-earthquake coupling. Moreover, the number, mass ratio, pounding stiffness, and gap values have a significant influence on the vibration suppression performance of the improved PTMD system. When the number of PTMD is increased from 3 to 9, the vibration reduction ratio of the vertical displacement is increased from 25.39% to 48.05%. As the mass ratio changes from 0.5% to 2%, the vibration reduction ratio increases significantly from 22.23% to 53.30%.

Particle filter approach for extracting the non-linear aerodynamic damping of a cable-stayed bridge subjected to crosswind action

  • Aljaboobi Mohammed;Shi-Xiong Zheng;Al-Sebaeai Maged
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.119-128
    • /
    • 2024
  • The aerodynamic damping is an essential factor that can considerably affect the dynamic response of the cable-stayed bridge induced by crosswind load. However, developing an accurate and efficient aerodynamic damping model is crucial for evaluating the crosswind load-induced response on cable-stayed bridges. Therefore, this study proposes a new method for identifying aerodynamic damping of the bridge structures under crosswind load using an extended Kalman filter (EKF) and the particle filter (PF) algorithm. The EKF algorithm is introduced to capture the aerodynamic damping ratio. PF technique is used to select the optimal spectral representation of the noise. The effectiveness and accuracy of the proposed solution were investigated through full-scale vibration measurement data of the crosswind-induced on the bridge's girder. The results show that the proposed solution can generate an efficient and robust estimation. The errors between the target and extracted values are around 0.01mm and 0.003^o, respectively, for the vertical and torsional motion. The relationship between the amplitude and the aerodynamic damping ratio is linear for small reduced wind velocity and nonlinear with the increasing value of the reduced wind velocity. Finally, the results show the influence of the level of noise.

Damage Detection in Cable-Stayed Bridges Using Vibration Modes (진동모드를 이용한 사장교의 손상 검색)

  • Kong, Min-Sik;Ka, Hoon;Son, Seok-Ho;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.113-123
    • /
    • 2006
  • As Cable-stayed bridges were constructed to the long span, they have become bigger and had weaknesses to vibration induced by earthquake, wind and vehicle loads. Structural damages induced by these loads affect the characteristic of vibration modes of structure. Damage detection of cable-stayed bridges by using existing safety diagnosis is difficult to detect the characteristic change of overall structural action. Also it requires very much time and cost. So in this study, the investigation of characteristic change of structural action and the detection of structural damages is analyzed by using characteristic properties of vibration mode before and after structural damage.

Condition assessment of stay cables through enhanced time series classification using a deep learning approach

  • Zhang, Zhiming;Yan, Jin;Li, Liangding;Pan, Hong;Dong, Chuanzhi
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.105-116
    • /
    • 2022
  • Stay cables play an essential role in cable-stayed bridges. Severe vibrations and/or harsh environment may result in cable failures. Therefore, an efficient structural health monitoring (SHM) solution for cable damage detection is necessary. This study proposes a data-driven method for immediately detecting cable damage from measured cable forces by recognizing pattern transition from the intact condition when damage occurs. In the proposed method, pattern recognition for cable damage detection is realized by time series classification (TSC) using a deep learning (DL) model, namely, the long short term memory fully convolutional network (LSTM-FCN). First, a TSC classifier is trained and validated using the cable forces (or cable force ratios) collected from intact stay cables, setting the segmented data series as input and the cable (or cable pair) ID as class labels. Subsequently, the classifier is tested using the data collected under possible damaged conditions. Finally, the cable or cable pair corresponding to the least classification accuracy is recommended as the most probable damaged cable or cable pair. A case study using measured cable forces from an in-service cable-stayed bridge shows that the cable with damage can be correctly identified using the proposed DL-TSC method. Compared with existing cable damage detection methods in the literature, the DL-TSC method requires minor data preprocessing and feature engineering and thus enables fast and convenient early detection in real applications.

Construction of Roof Structure for Jeju Worldcup Stadium (제주월드컵경기장 지붕구조물의 시공)

  • Lee Ju-Young;Kim Chan-Soo
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.174-179
    • /
    • 2002
  • The cable stayed roof structure of Jeju worldcup stadium is erected with correct prestressed force that is required by the structural engineer who designs this structure. This study evaluated and adapted the erection process of cable, the erection force and the measurement of cable force for Jeju worldcup stadium. The process of erection is required not only to calculate election force but also to check structural stability, post process, construction period and using cranes. Considering the site conditions and technical problems, this study can attain successfully the erection of cable stayed roof structure of Jeju worldcup stadium with allowable errors.

  • PDF

Nonlinear analysis of cable-stayed spatial latticed structures

  • Zhou, Dai;Liu, Hongyu;Jin, Bo
    • Structural Engineering and Mechanics
    • /
    • v.15 no.4
    • /
    • pp.415-436
    • /
    • 2003
  • The combination of spatial latticed structures (hereafter SLS) and flexible cables, the cable-stayed spatial latticed structures (hereafter CSLS) can cross longer span. According to variation principle, a novel geometric nonlinear formulation for 3-D bar elements considering large displacement and infinitesimal rotation increments with second-order precision is developed. The cable nonlinearity is investigated and it is taken that the secant modulus method can be considered as an exact method for a cable member. The tower column with which the cables link is regarded as a special kind of beam element, and, a new simplified stiffness formulation is presented. The computational strategies for the nonlinear dynamic response of structures are given, and the ultimate load carrying capacities and seismic responses are analyzed numerically. It is noted that, compared with corresponding spatial latticed shells, the cable-stayed spatial latticed shells have more strength and more stiffness, and that the verical seismic responses of both CSLS and CLS are remarkably greater than the horizontal ones. In addition, the computation shows that the stiffness of tower column influences the performance of CSLS to a certain extent and the improvement of structural strength and stiffness of CSLS is relevant not only to cables but also to tower columns.

Change of Statical Behavior and Ultimate Capacity of Steel Cable-stayed Bridges after Cable Failure (케이블 단선 후 강사장교의 구조 및 극한 거동 변화)

  • Kim, Seung-Jun;Choi, Jun-Ho;Won, Deok-Hee;Han, Taek-Hee;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.747-761
    • /
    • 2011
  • This paper presents an investigation on the change in the statical behavior and the ultimate capacity of steel cable-stayed bridges after cable failure. Cable failure can occur due to fire, direct vehicle clash accidents, cable or anchorage fatigue, and so on. Moreover, the cable may be temporarily disconnected during cable replacement work. When cable failure occurs, the load, that was supported by the broken cable is first transferred to another cable. Then the structural state changes due to the interaction between the girder, mast, and cables. Moreover, it can be predicted that the ultimate capacity will decrease after cable failure, because of the loss of the support system. In this study, the analysis method is suggested to find the new equilibrium state after cable failure based on the theory of nonlinear finite element analysis. Moreover, the ultimate analysis method is also suggested to analyze the ultimate behavior of live loads after cable failure. For a more rational analysis, a three-step analysis procedure is suggested and used, which consisted of initial shape analysis, cable failure analysis, and live load analysis. Using this analysis method, an analytical study was performed to investigate the changes in the structural state and ultimate behavior of steel cable-stayed bridges.

The Erection Method of Starter Segment for Cable Stayed Bridge using Asymmetric System and Cable (케이블과 비대칭 구조를 이용한 사장교 주두부 시공 방법)

  • Cho, Seo-Kyung;Yoon, Tae-Seob;Jeong, Seung-Wook;Lee, Jea-Chan;Eo, Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.1031-1038
    • /
    • 2002
  • In this paper the erection method of the Seohae Bridge starter is presented. The erection method of starter for cable stayed bridge was changed from conventional bracket supported erection to heavy lifting supported directly by stays. There was the need to reduce the erection time drastically. The cost saving was obtained as a bonus.

  • PDF

The Behavior Characteristic and Buckling Strength of Stiffening-Girder of Cable stayed bridge according to Pylon's shape and Flexure Stiffness (주탑형상 및 강성이 사장교의 거동 및 주형좌굴에 미치는 영향)

  • Choe Hak-Ze;Chae Gyu-Bong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.759-763
    • /
    • 2006
  • Cable Stayed Bridge is mainly composed of three element. Composed element are cable. stiffening girder and Pylon. The characteristic of bridge's behavior depend on these three element's relative stiffness, shape and system of bridge. The purpose of this paper is to exame the characteristic of bridge's behavior and buckling strength of stiffening girder according to shape and flexure stiffness of pylon

  • PDF