• Title/Summary/Keyword: cable sheath grounding

Search Result 32, Processing Time 0.03 seconds

Measurement and Analysis of Sheath Circulating Current in Domestic Underground Transmission Cables (국내 송전 케이블 시스 순환전류 실측 및 분석)

  • 하체웅;김정년;이수길;김동욱;이종범;강지원
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.4
    • /
    • pp.193-200
    • /
    • 2003
  • The use of underground transmission tables has continuously increased in densely inhabited urban and suburban area. Due to a increasing demand of underground cables, two or more circuits are installed in parallel for several kilometers. It, however, has not been realized that the sheath circulating current is generated in the system where a large number of cables are laid in the same route. In this paper, Author studied diversely the sheath circulating current on underground cables depending on the various length rate, the phase arrangement, and the grounding resistance of the sheath in the cross-bonded section. It was clear that very large circulating current is generated in cable systems due to unbalanced length rate and phase arrangement in the cross-bonded section.

Effects of Reclosing for Insulation Coordination in 345kV Combined Transmission Lines (345kV 혼합송전선로에서 재폐로가 절연설계에 미치는 영향)

  • Lee, Jong-Beom;Jung, Chae-Kyun;Lim, Kwang-Sik;Kang, Ji-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.847-853
    • /
    • 2010
  • This paper describes switching surge analysis for reclosing decision in 345kV combined transmission line with XLPE power cable. Reclosing operation should be decided based on the detailed technical analysis in combined transmission line because this line includes power cable section which is week on insulation. Insulation of power cable can be breakdown at the week point in case of reclosing moment. Therefore the detailed analysis has to be carried out by considering several conditions such as length ratio of power cable section, arrestor, inserting resistance, charging rate, grounding resistance, etc.. On the other hand sheath voltage on IJ(Insulated Joint) is analyzed to check dangerous condition on cable cover. Analysis is performed by EMTP/ATP. Analysis results show that reclosing can be operated as the single line-to-ground fault occurs on overhead line in 345kV combined transmission line, if the inserting resistance is considered before the operation of main circuit breaker.

Analysis and Estimation of the Transient Thermal Characteristics of OF Cable systems (OF 케이블 계통 과도상태 열특성 해석 및 평가)

  • Kang, Ji-Won;Lee, Dong-Il;Jung, Chae-Kyun;Lee, Jong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.10
    • /
    • pp.487-495
    • /
    • 2005
  • This paper reviews the characteristic of thermal and temperature of oil field cable in transient state such as grounding fault and lightning surge. For analysis in various conditions, many actual underground power cable systems are modeled using ATP. These results are applied for the examination of temperature increase when the single line to ground fault by the breakdown of insulation part and hitting of lightning surge are occurred. The inner part temperature of OF cable is analysed according to the various kinds of cable using the thermal model of transient state. The temperature increase of sheath and crossbonded lead bv fault current is also analysed using IEC 60949.

Analysis of Installation Methods of Earth Continuity Conductor on Underground Power Cable Systems (지중송전계통 병행지선 설치 방안 검토)

  • Kang, J.W.;Jung, C.K.;Yoon, H.H.;Yoon, J.K.;Kim, D.J.;Kim, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.468-469
    • /
    • 2008
  • In this paper, the effects of earth continuity conductor are deeply analyzed for reducing the level of induced sheath voltage at the single point bonded sections. The various installation conditions of an earth continuity conductor are considered including conductor dimensions, its spacing from the three phase cables, and utilization of two earth continuity conductors when the grounding fault occurs on real power cable systems. Finally, the transient characteristics including reduction effects of induced sheath voltage are proved by EMTP simulations. The optimal installation condition of earth continuity conductor is also proposed based on those results.

  • PDF

Transient Phenomena Analysis and Estimation According to Unbalance Factors on Underground Power Cable Systems (지중송전계통에서 불평형 구성요소에 따른 과도현상 해석 및 평가)

  • Jung Chae-Kyun;Lee Jong-Beom;Kang Ji-Won;Lee Dong-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.8
    • /
    • pp.410-417
    • /
    • 2005
  • This paper analyses the transient phenomena against single line to ground fault and lightning surge on underground power cable systems. For analysis in various fault conditions, several actual underground power cable systems are modeled using ATP In ground fault, the transient characteristic of the conductor and the sheath according to the fault current and the installation types of CCPU are analysed. In lightning surge strokes, the various unbalanced conditions including the length of crossbonded lead, the breakdown of CCPU and distance unbalance are considered. This paper is expected to contribute the establishment of proper protection methods against transients on underground power cable systems.

Measurement and Analysis of Line Impedance in Underground Cables (지중케이블 선로 임피던스 실측 및 분석)

  • Ha, C.W.;Kim, J.N.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.205-207
    • /
    • 2003
  • The line impedance is important data that is applied in all analysis fields of electric power system like power flow, fault current, stability and relay calculation etc. Usually, impedance can be accurately calculated in case of overhead line. However, in case of power cables or combined transmission lines, impedance can not be accurately calculated because cable systems have the sheath, grounding wires, and earth resistance. Therefore, if there is a fault in cable system, these terms will severely be caused much error to calculation of impedance. Therefore, the line impedance were measured for this study in an actual power system of underground cables, and were analyzed by a generalized circuit analysis program EMTP for comparison with the measured value. These analysis result is considered to become foundation of impedance calculation for underground cable.

  • PDF

A Digital Distance Relaying Algorithm in Combined Transmission Line Connected whth Overhead Line and Underground Cable (가공송전선로와 지중송전선로가 연계된 혼합송전선로에서 디지털 거리계전 알고리즘)

  • Ha, Che-Wung;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.440-442
    • /
    • 2000
  • This paper describes the digital distance algorithm in case of combined transmission line connected with overhead line and underground cable. Actually as fault is occurred in cable, it results in the complicated phenomena due to the several kind of grounding method in the sheath of cable. Accordingly the impedance. Therefore the correct impedance calculation algorithm is requested in combined transmission line to avoid the wrong trip of relay. This paper presents the development result of impedance calculation algorithm In such transmission line.

  • PDF

The Surge Analysis of the Oil-Filled cable (OF 케이블의 과전압 해석)

  • Cho, S.B.;Jeong, J.K.;Kang, Y.W.;Kim, J.Y.;Park, Y.U.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1727-1730
    • /
    • 1997
  • This paper describes the surge calculations on cable cores and sheaths when an unit step surge is applied in a cable core. It is clear that the maximum core voltage appears at the ending point and maximum sheath voltage is induced at the sending points. It appears that the smaller grounding resistance can offer results having some trends which larger core voltage appears at the end point and smaller voltage is induced at the sending point.

  • PDF

Line Impedance Analysis of Underground Cable in Power Plant (발전소에 포설된 케이블 선로 임피던스 분석)

  • Ha, C.W.;Han, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.612-613
    • /
    • 2007
  • The line impedance is important data that are applied in all analysis fields of electric power system such as power flow, fault current, stability and relay calculation etc. Usually, the impedance can be accurately calculated in case of overhead line. However, in case of power cables or combined transmission lines, the impedance can not be accurately calculated because cable systems have the sheath, grounding wires, and earth resistances. Therefore, if there is a fault in cable system, these terms will severely be caused many errors for calculating impedance. In this paper, the line impedance is measured in a power system of underground cables, and is analyzed by a generalized circuit analysis program, EMTP(Electromagnetic Transient Program), for comparison with the measured value. These analysis results are considered to become foundation of impedance calculation for underground cables.

  • PDF

A Study on Reclosing Decision on 154kV Combined Transmission Lines (154kV 혼합송전선로 재폐로 결정에 관한 연구)

  • Jung, Chae-Kyun;Park, Hung-Sok;Kang, Ji-Won;Lee, Jong-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1761-1769
    • /
    • 2010
  • This paper describes switching surge analysis on reclosing decision in 154kV combined transmission line with power cables. Reclosing should be operated in combined transmission line based on the technical evaluation because of insulation problem of power cable section. If the surge strikes on power cable, the breakdown can occur at week point of cable insulation. Therefore the detailed analysis is required by considering several conditions such as length ratio of power cable, arrester, fault resistance, charging rate and grounding resistance, etc.. In addition, sheath voltage on IJ(Insulated Joint) is analyzed to confirm the protective level. Simulation is performed by EMTP/ATP. Analysis results show that reclosing can be operated without any special problem by the single line-to-ground fault with fault resistance of $1\Omega$ to $50\Omega$ occurred at the overhead transmission section in 154kV combined transmission lines and trap charge of 100% and 110%.