• Title/Summary/Keyword: cable element

Search Result 382, Processing Time 0.027 seconds

An efficient approach for model updating of a large-scale cable-stayed bridge using ambient vibration measurements combined with a hybrid metaheuristic search algorithm

  • Hoa, Tran N.;Khatir, S.;De Roeck, G.;Long, Nguyen N.;Thanh, Bui T.;Wahab, M. Abdel
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.487-499
    • /
    • 2020
  • This paper proposes a novel approach to model updating for a large-scale cable-stayed bridge based on ambient vibration tests coupled with a hybrid metaheuristic search algorithm. Vibration measurements are carried out under excitation sources of passing vehicles and wind. Based on the measured structural dynamic characteristics, a finite element (FE) model is updated. For long-span bridges, ambient vibration test (AVT) is the most effective vibration testing technique because ambient excitation is freely available, whereas a forced vibration test (FVT) requires considerable efforts to install actuators such as shakers to produce measurable responses. Particle swarm optimization (PSO) is a famous metaheuristic algorithm applied successfully in numerous fields over the last decades. However, PSO has big drawbacks that may decrease its efficiency in tackling the optimization problems. A possible drawback of PSO is premature convergence leading to low convergence level, particularly in complicated multi-peak search issues. On the other hand, PSO not only depends crucially on the quality of initial populations, but also it is impossible to improve the quality of new generations. If the positions of initial particles are far from the global best, it may be difficult to seek the best solution. To overcome the drawbacks of PSO, we propose a hybrid algorithm combining GA with an improved PSO (HGAIPSO). Two striking characteristics of HGAIPSO are briefly described as follows: (1) because of possessing crossover and mutation operators, GA is applied to generate the initial elite populations and (2) those populations are then employed to seek the best solution based on the global search capacity of IPSO that can tackle the problem of premature convergence of PSO. The results show that HGAIPSO not only identifies uncertain parameters of the considered bridge accurately, but also outperforms than PSO, improved PSO (IPSO), and a combination of GA and PSO (HGAPSO) in terms of convergence level and accuracy.

GEOTECHNICAL DESIGNS OF THE SHIP IMPACT PROTECTION SYSTEM FOR INCHEON BRIDGE

  • Choi, Sung-Min;Oh, Seung-Tak;Park, Sang-Il;Kim, Sung-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.72-77
    • /
    • 2010
  • The Incheon Bridge, which was opened to the traffic in October 2009, is an 18.4 km long sea-crossing bridge connecting the Incheon International Airport with the expressway networks around the Seoul metropolitan area by way of Songdo District of Incheon City. This bridge is an integration of several special featured bridges and the major part of the bridge consists of cable-stayed spans. This marine cable-stayed bridge has a main span of 800 m wide to cross the vessel navigation channel in and out of the Incheon Port. In waterways where ship collision is anticipated, bridges shall be designed to resist ship impact forces, and/or, adequately protected by ship impact protection (SIP) systems. For the Incheon Bridge, large diameter circular dolphins as SIP were made at 44 locations of the both side of the main span around the piers of the cable-stayed bridge span. This world's largest dolphin-type SIP system protects the bridge against the collision with 100,000 DWT tanker navigating the channel with speed of 10 knots. Diameter of the dolphin is up to 25 m. Vessel collision risk was assessed by probability based analysis with AASHTO Method-II. The annual frequency of bridge collapse through the risk analysis for 71,370 cases of the impact scenario was less than $0.5{\times}10^{-4}$ and satisfies design requirements. The dolphin is the circular sheet pile structure filled with crushed rock and closed at the top with a robust concrete cap. The structural design was performed with numerical analyses of which constitutional model was verified by the physical model experiment using the geo-centrifugal testing equipment. 3D non-linear finite element models were used to analyze the structural response and energy-dissipating capability of dolphins which were deeply embedded in the seabed. The dolphin structure secures external stability and internal stability for ordinary loads such as wave and current pressure. Considering failure mechanism, stability assessment was performed for the strength limit state and service limit state of the dolphins. The friction angle of the crushed stone as a filling material was reduced to $38^{\circ}$ considering the possibility of contracting behavior as the impact.

  • PDF

Effect of the Tapered Angle on the Ultimate Load Factors of PPWS Sockets in Main Cables of Suspension Bridges (현수교 PPWS용 소켓의 내벽 경사각이 소켓의 극한 하중계수에 미치는 영향)

  • Yoo, Hoon;Lee, Sung-Hyung;Seo, Ju-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.47-59
    • /
    • 2013
  • Ultimate load factors of PPWS(Prefabricated Parallel Wire Strand) sockets in main cables of suspension bridges are studied with respect to the tapered angles of the inner surface of sockets. After briefly reviewing the current design method, 15 numbers of finite element models of sockets are prepared by varying the number of wires in a strand and the tapered angles. The finite element models are updated by comparing experimental and numerical results, so that the models can reflect the real behavior of sockets. The stress distributions at the first yielding and ultimate states are analyzed by performing the incremental load analysis using ABAQUS. It is concluded that the optimized tapered angle of sockets should be determined at the specific angle between the results of verification equations of the required bonding length and stress resistance length.

Flutter analysis of Stonecutters Bridge

  • Hui, Michael C.H.;Ding, Q.S.;Xu, Y.L.
    • Wind and Structures
    • /
    • v.9 no.2
    • /
    • pp.125-146
    • /
    • 2006
  • Stonecutters Bridge of Hong Kong is a cable-stayed bridge with two single-column pylons each 298 m high and an aerodynamic twin deck. The total length of the bridge is 1596 m with a main span of 1018 m. The top 118 m of the tower will comprise structural steel and concrete composite while the bottom part will be of reinforced concrete. The bridge deck at the central span will be of steel whilst the side spans will be of concrete. Stonecutters Bridge has adopted a twin-girder deck design with a wide clear separation of 14.3 m between the two longitudinal girders. Although a number of studies have been conducted to investigate the aerodynamic performance of twin-girder deck, the actual real life application of this type of deck is extremely limited. This therefore triggered the need for conducting the present studies, the main objective of which is to investigate the performance of Stonecutters Bridge against flutter at its in-service stage as well as during construction. Based on the flutter derivatives obtained from the 1:80 scale rigid section model experiment, flutter analysis was carried out using 3-D finite element based single parameter searching method developed by the second author of this paper. A total of 6 finite element models of the bridge covering the in-service stage as well as 5 construction stages were established. The dynamic characteristics of the bridge associated with these stages were computed and applied in the analyses. Apart from the critical wind speeds for the onset of flutter, the dominant modes of vibration participating in the flutter vibration were also identified. The results indicate that the bridge will be stable against flutter at its in-service stage as well as during construction at wind speeds much higher than the verification wind speed of 95 m/s (1-minute mean).

Aero-elastic response of transmission line system subjected to downburst wind: Validation of numerical model using experimental data

  • Elawady, Amal;Aboshosha, Haitham;El Damatty, Ashraf
    • Wind and Structures
    • /
    • v.27 no.2
    • /
    • pp.71-88
    • /
    • 2018
  • At the University of Western Ontario (UWO), numerical tools represented in semi-closed form solution for the conductors and finite element modeling of the lattice tower were developed and utilized significantly to assess the behavior of transmission lines under downburst wind fields. Although these tools were validated against other finite element analyses, it is essential to validate the findings of those tools using experimental data. This paper reports the first aeroelastic test for a multi-span transmission line under simulated downburst. The test has been conducted at the three-dimensional wind testing facility, the WindEEE dome, located at the UWO. The experiment considers various downburst locations with respect to the transmission line system. Responses obtained from the experiment are analyzed in the current study to identify the critical downburst locations causing maximum internal forces in the structure (i.e., potential failure modes), which are compared with the failure modes obtained from the numerical tools. In addition, a quantitative comparison between the measured critical responses obtained from the experiment with critical responses obtained from the numerical tools is also conducted. The study shows a very good agreement between the critical configurations of the downburst obtained from the experiment compared to those predicted previously by different numerical studies. In addition, the structural responses obtained from the experiment and those obtained from the numerical tools are in a good agreement where a maximum difference of 16% is found for the mean responses and 25% for the peak responses.

Seismic Response Analysis of a Floating Bridge with Discrete Pontoons (이산폰툰형 부유식교량의 지진응답해석)

  • Kwon, Jang-Sup
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.47-58
    • /
    • 2005
  • Dynamic response analysis in time dimain is conducted for floating bridges with discrete pontoons subject to spatial variation of ground motions. The Spatial variation of ground motions is considered with the coherency function model which represents wave passage, incoherence and local site effects. The superstructure of the bridge is represented by space frame and elastic catenary cable elements, the abutment us modelde with the spring element of FHWA guideline for considering soil structure interaction and the concept of retardation function is utilized to consider the frequency dependency of the hydrodynamic coefficients which are obtainde by boundary element method. multiple support excitations considering the spatial variation. The noticeable amplification of the response can be shown when the spatial variation of ground motions is incorporated in the anallysis of floating bridges.

Anchor and Mooring Line Analysis in Cohesive Seafloor (해성점토지반에 관입된 앵커 및 닻줄의 변형해석)

  • Han Heui-Soo;Jeon Sung-Kon;Chang Dong-Hun;Chang Seo-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.3
    • /
    • pp.37-43
    • /
    • 2006
  • An analytical solution method capable of determining the geometric configuration and developed tensile forces of mooring lines associated with fixed plate/pile or drag anchors has been developed. The solution method, satisfying complete equilibrium conditions, is capable of analyzing multi-segmented mooring lines that can consist of either chains, cables, or synthetic wires embedded in layered seafloor soils. The solution method utilizes a systematic iterative search method based on specific boundary conditions. This paper describes the principles associated with the development of the solution for the mooring line analysis. Comparisons of predictions with results from a series of field tests of mooring lines on various types of drag anchors are also described. Comparisons include the tension in anchor, the length of mooring line on the bottom, and the angle of mooring line at the water surface buoy. The results indicate that the analytical solution method is capable of predicting the behavior of mooring lines with high degree of accuracy.

A numerical application of Bayesian optimization to the condition assessment of bridge hangers

  • X.W. Ye;Y. Ding;P.H. Ni
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • Bridge hangers, such as those in suspension and cable-stayed bridges, suffer from cumulative fatigue damage caused by dynamic loads (e.g., cyclic traffic and wind loads) in their service condition. Thus, the identification of damage to hangers is important in preserving the service life of the bridge structure. This study develops a new method for condition assessment of bridge hangers. The tension force of the bridge and the damages in the element level can be identified using the Bayesian optimization method. To improve the number of observed data, the additional mass method is combined the Bayesian optimization method. Numerical studies are presented to verify the accuracy and efficiency of the proposed method. The influence of different acquisition functions, which include expected improvement (EI), probability-of-improvement (PI), lower confidence bound (LCB), and expected improvement per second (EIPC), on the identification of damage to the bridge hanger is studied. Results show that the errors identified by the EI acquisition function are smaller than those identified by the other acquisition functions. The identification of the damage to the bridge hanger with various types of boundary conditions and different levels of measurement noise are also studied. Results show that both the severity of the damage and the tension force can be identified via the proposed method, thereby verifying the robustness of the proposed method. Compared to the genetic algorithm (GA), particle swarm optimization (PSO), and nonlinear least-square method (NLS), the Bayesian optimization (BO) performs best in identifying the structural damage and tension force.

Safety Assessment of Corrosion-damaged Steel Structure using Imprecise Reliability (불확실 신뢰도 기법을 이용한 부식된 강구조물의 안전도평가)

  • Choi, Hyun Ho;Cho, Hyo Nam;Seo, Jong Won;Sun, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.293-300
    • /
    • 2006
  • There is a high degree of uncertainty in measurements of the thickness or the loss of thickness of corroded elements. Generally the thickness of corroded elements varies from one location of the element to another depending on the degree of corrosion, which makes the safety assessment difficult. Therefore, a procedure for safety assessment of corrosion- damaged steel structures using an imprecise reliability is proposed in this paper. The proposed safety assessment procedure using the imprecise reliability was also applied to a cable-stayed bridge in Korea to demonstrate its effectiveness and applicability. Since there is a large variation in measurements of the thickness of corroded elements, the thickness of corroded elements was considered as the imprecise element. This variation was found to be directly related to the degree of corrosion. Therefore, the variation increases as the degree of corrosion increases. Based on the comparative observations between the conventional reliability and the imprecise reliability, it is suggested that the imprecise reliability analysis derived based on the subjective or statistical judgment of conditional independence could be successfully utilized for the risk or safety assessment of corrosion-damaged structures.

안정화 층에 따른 YBCO 박막형 선재의 통전 특성에 관한 연구

  • Du, Ho-Ik;Kim, Min-Ju;Kim, Yong-Jin;Lee, Dong-Hyeok;Han, Byeong-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.214-214
    • /
    • 2009
  • While critical properties of BSCCO wires rely considerably on grid direction upon BSCCO and have very complicated mechanism of generating a superconducting phase, making it difficult to improve properties of wires, YBCO thin-film wires which can be formed in a superconducting phase upon metal board through vapor deposition processing can get excellent direction and reduce manufacturing costs with more flexibility in improving critical properties; thus, they will be suitable for instrument application in the future. Contrary to BSCCO wires for which thick silver alloy covering materials should inevitably be used, moreover, YBCO thin-film wires have an advantage of making thickness and quality of covering materials different by usage. Such a property can be an important element to widen application of wires by presenting possibility of using thin-film wires as superconducting material for fault current limiter as well as for high power current application. In this study we intend to prepare YBCO thin-film wires with different stabilizer layers to analyze current application and current restriction properties by stabilizer layers on the basis of detailed researches on changes in current classification properties below critical value.

  • PDF