• 제목/요약/키워드: cable condition assessment

검색결과 27건 처리시간 0.019초

Unsupervised one-class classification for condition assessment of bridge cables using Bayesian factor analysis

  • Wang, Xiaoyou;Li, Lingfang;Tian, Wei;Du, Yao;Hou, Rongrong;Xia, Yong
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.41-51
    • /
    • 2022
  • Cables are critical components of cable-stayed bridges. A structural health monitoring system provides real-time cable tension recording for cable health monitoring. However, the measurement data involve multiple sources of variability, i.e., varying environmental and operational factors, which increase the complexity of cable condition monitoring. In this study, a one-class classification method is developed for cable condition assessment using Bayesian factor analysis (FA). The single-peaked vehicle-induced cable tension is assumed to be relevant to vehicle positions and weights. The Bayesian FA is adopted to establish the correlation model between cable tensions and vehicles. Vehicle weights are assumed to be latent variables and the influences of different transverse positions are quantified by coefficient parameters. The Bayesian theorem is employed to estimate the parameters and variables automatically, and the damage index is defined on the basis of the well-trained model. The proposed method is applied to one cable-stayed bridge for cable damage detection. Significant deviations of the damage indices of Cable SJS11 were observed, indicating a damaged condition in 2011. This study develops a novel method to evaluate the health condition of individual cable using the FA in the Bayesian framework. Only vehicle-induced cable tensions are used and there is no need to monitor the vehicles. The entire process, including the data pre-processing, model training and damage index calculation of one cable, takes only 35 s, which is highly efficient.

Cable anomaly detection driven by spatiotemporal correlation dissimilarity measurements of bridge grouped cable forces

  • Dong-Hui, Yang;Hai-Lun, Gu;Ting-Hua, Yi;Zhan-Jun, Wu
    • Smart Structures and Systems
    • /
    • 제30권6호
    • /
    • pp.661-671
    • /
    • 2022
  • Stayed cables are the key components for transmitting loads in cable-stayed bridges. Therefore, it is very important to evaluate the cable force condition to ensure bridge safety. An online condition assessment and anomaly localization method is proposed for cables based on the spatiotemporal correlation of grouped cable forces. First, an anomaly sensitive feature index is obtained based on the distribution characteristics of grouped cable forces. Second, an adaptive anomaly detection method based on the k-nearest neighbor rule is used to perform dissimilarity measurements on the extracted feature index, and such a method can effectively remove the interference of environment factors and vehicle loads on online condition assessment of the grouped cable forces. Furthermore, an online anomaly isolation and localization method for stay cables is established, and the complete decomposition contributions method is used to decompose the feature matrix of the grouped cable forces and build an anomaly isolation index. Finally, case studies were carried out to validate the proposed method using an in-service cable-stayed bridge equipped with a structural health monitoring system. The results show that the proposed approach is sensitive to the abnormal distribution of grouped cable forces and is robust to the influence of interference factors. In addition, the proposed approach can also localize the cables with abnormal cable forces online, which can be successfully applied to the field monitoring of cables for cable-stayed bridges.

가속도계를 이용한 사장교의 지진거동 계측시스템 개발에 대한 연구 (A Study on the Development of a Seismic Response Monitoring System for Cable Bridges by Using Accelerometers)

  • 정성훈;장원석;신수봉
    • 한국지진공학회논문집
    • /
    • 제25권6호
    • /
    • pp.283-292
    • /
    • 2021
  • In this study, a structural health monitoring system for cable-stayed bridges is developed. In the system, condition assessment of the structure is performed based on measured records from seismic accelerometers. Response indices are defined to monitor structural safety and serviceability and derived from the measured acceleration data. The derivation process of the indices is structured to follow the transformation from the raw data to the outcome. The process includes noise filtering, baseline correction, numerical integration, and calculation of relative differences. The system is packed as a condition assessment program, which consists of four major processes of the structural health evaluation: (i) format conversion of the raw data, (ii) noise filtering, (iii) generation of response indices, and (iv) condition evaluation. An example set of limit states is presented to evaluate the structural condition of the test-bed and cable-stayed bridge.

Condition assessment of stay cables through enhanced time series classification using a deep learning approach

  • Zhang, Zhiming;Yan, Jin;Li, Liangding;Pan, Hong;Dong, Chuanzhi
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.105-116
    • /
    • 2022
  • Stay cables play an essential role in cable-stayed bridges. Severe vibrations and/or harsh environment may result in cable failures. Therefore, an efficient structural health monitoring (SHM) solution for cable damage detection is necessary. This study proposes a data-driven method for immediately detecting cable damage from measured cable forces by recognizing pattern transition from the intact condition when damage occurs. In the proposed method, pattern recognition for cable damage detection is realized by time series classification (TSC) using a deep learning (DL) model, namely, the long short term memory fully convolutional network (LSTM-FCN). First, a TSC classifier is trained and validated using the cable forces (or cable force ratios) collected from intact stay cables, setting the segmented data series as input and the cable (or cable pair) ID as class labels. Subsequently, the classifier is tested using the data collected under possible damaged conditions. Finally, the cable or cable pair corresponding to the least classification accuracy is recommended as the most probable damaged cable or cable pair. A case study using measured cable forces from an in-service cable-stayed bridge shows that the cable with damage can be correctly identified using the proposed DL-TSC method. Compared with existing cable damage detection methods in the literature, the DL-TSC method requires minor data preprocessing and feature engineering and thus enables fast and convenient early detection in real applications.

Long-term condition monitoring of cables for in-service cable-stayed bridges using matched vehicle-induced cable tension ratios

  • Peng, Zhen;Li, Jun;Hao, Hong
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.167-179
    • /
    • 2022
  • This article develops a long-term condition assessment method for stay cables in cable stayed bridges using the monitored cable tension forces under operational condition. Based on the concept of influence surface, the matched cable tension ratio of two cables located at the same side (either in the upstream side or downstream side) is theoretically proven to be related to the condition of stay cables and independent of the positions of vehicles on the bridge. A sensor grouping scheme is designed to ensure that reliable damage detection result can be obtained even when sensor fault occurs in the neighbor of the damaged cable. Cable forces measured from an in-service cable-stayed bridge in China are used to demonstrate the accuracy and effectiveness of the proposed method. Damage detection results show that the proposed approach is sensitive to the rupture of wire damage in a specific cable and is robust to environmental effects, measurement noise, sensor fault and different traffic patterns. Using the damage sensitive feature in the proposed approach, the metrics such as accuracy, precision, recall and F1 score, which are used to evaluate the performance of damage detection, are 97.97%, 95.08%, 100% and 97.48%, respectively. These results indicate that the proposed approach can reliably detect the damage in stay cables. In addition, the proposed approach is efficient and promising with applications to the field monitoring of cables in cable-stayed bridges.

Distributed crack sensors featuring unique memory capability for post-earthquake condition assessment of RC structures

  • Chen, Genda;McDaniel, Ryan;Sun, Shishuang;Pommerenke, David;Drewniak, James
    • Smart Structures and Systems
    • /
    • 제1권2호
    • /
    • pp.141-158
    • /
    • 2005
  • A new design of distributed crack sensors based on the topological change of transmission line cables is presented for the condition assessment of reinforced concrete (RC) structures during and immediately after an earthquake event. This study is primarily focused on the performance of cable sensors under dynamic loading, particularly a feature that allows for some "memory" of the crack history of an RC member. This feature enables the post-earthquake condition assessment of structural members such as RC columns, in which the earthquake-induced cracks are closed immediately after an earthquake event due to gravity loads, and are visually undetectable. Factors affecting the onset of the feature were investigated experimentally with small-scale RC beams under cyclic loading. Test results indicated that both crack width and the number of loading cycles were instrumental in the onset of the memory feature of cable sensors. Practical issues related to dynamic acquisition with the sensors are discussed. The sensors were proven to be fatigue resistant from shake table tests of RC columns. The sensors continued to show useful performance after the columns can no longer support additional loads.

A practical modification to coaxial cables as damage sensor with TDR in obscured structural members and RC piles

  • Mehmet Ozgur;Sami Arsoy
    • Structural Monitoring and Maintenance
    • /
    • 제10권2호
    • /
    • pp.133-154
    • /
    • 2023
  • Obscured structural members are mostly under-evaluated during condition assessment due to lack of visual inspection capability. Insufficient information about the integrity of these structural members poses a significant risk for public safety. Time domain reflectometry (TDR) is a novel approach in structural health monitoring (SHM). Ordinary coaxial cables "as is" without a major modification are not suitable for SHM with TDR. The objective of this study is to propose a practical and cost-effective modification approach to commercially available coaxial cables in order to use them as a "cable sensor" for damage detection with the TDR equipment for obscured structural members. The experimental validation and assessment of the proposed modification approach was achieved by conducting 3-point bending tests of the model piles as a representative obscured structural member. It can be noted that the RG59/U-6 and RG6/U-4 cable sensors expose higher strain sensitivity in comparison with non-modified "as is" versions of the cables used. As a result, the cable sensors have the capability of sensing both the presence and the location of a structural damage with a maximum aberration of 3 cm. Furthermore, the crack development can be monitored by the RG59/U-6 cable sensor with a simple calibration.

A combined experimental and numerical method for structural response assessment applied to cable-stayed footbridges

  • Kossakowski, Pawel G.
    • Advances in Computational Design
    • /
    • 제2권3호
    • /
    • pp.143-163
    • /
    • 2017
  • This paper presents a non-destructive testing method for estimating the structural response of cable-stayed footbridges. The approach combines field measurements with a numerical static analysis of the structure. When the experimental information concerning the structure deformations is coupled with the numerical data on the structural response, it is possible to calculate the static forces and the design tension resistance in selected structural elements, and as a result, assess the condition of the entire structure. The paper discusses the method assumptions and provides an example of the use of the procedure to assess the load-carrying capacity of a real steel footbridge. The proposed method can be employed to assess cable-stayed structures including those made of other materials, e.g., concrete, timber or composites.

Comparisons and analysis on the prototype EU-DEMO TF CICC with Nb3Sn cable

  • Kwon, Soun Pil
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권4호
    • /
    • pp.31-39
    • /
    • 2017
  • European R&D on designing their version of a DEMO fusion tokamak has recently resulted in the testing of a prototype $Nb_3Sn$ Cable-in-Conduit Conductor (CICC) for the DEMO TF coil. The characteristics and reported results of low temperature performance tests with the prototype CICC sample are compared with those from CICC samples incorporating other recent $Nb_3Sn$ cable designs. The EU-DEMO TF CICC prototype shows performance characteristics similar to that of the ITER CS CICC with short twist pitch. This is a first for a CICC sample that does not have a circular cross section. Assessment of its internal magnetostatic self-field suggests that a reduction in the internal self-field due to the rectangular geometry of the EU-DEMO TF CICC prototype compared to one with a circular geometry may have contributed to the performance characteristics showing current sharing temperature ($T_{cs}$) initially increase then stabilize with repeated electromagnetic loading, similarly to ITER CS CICC results. However, constraints on the internal self-field are not a sufficient condition for this $T_{cs}$ characteristic to occur.

해월(海越)송전선 하부의 선박 통항 안전성 평가에 관한 연구 (A Study on Safety Assessment for Ship Sailing under Electric Power Cable)

  • 김현종;홍태호
    • 해양환경안전학회지
    • /
    • 제13권1호
    • /
    • pp.55-60
    • /
    • 2007
  • 해월송전선의 해상고에 의하며 선박의 항로가 제한되는 해역에 있어서, 해월송전선에 관하여 현재 알 수 있는 정보는 아주 제한적인데, 주어진 정보를 토대로 송전선철탑들 사이의 임의의 위치에서도 해월송전선의 해상고를 알아낼 수 있는 방법을 제시하였다. 그리고 해월송전선의 하부를 선박이 항해할 경우의 안전성을 평가할 수 있는 방법론적 모델을 제시하였다. 실제 표본선박이 항해한 궤적을 조사하여 통계처리를 한 결과, 선박이 안전통항구간을 벗어날 확률은 약 0.00001 정도로 밝혀졌다. 따라서 네델란드 응용과학연구소의 보고서에 의한 안전기준(항만 내, 방파제 입구 부근에서는 0.0001 이하이면 안전하다고 판단.)보다 10배 정도 더 안전하다고 판단된다.

  • PDF