• Title/Summary/Keyword: cRNA target

Search Result 242, Processing Time 0.025 seconds

MiRNA Synergistic Network Construction and Enrichment Analysis for Common Target Genes in Small-cell Lung Cancer

  • Zhang, Tie-Feng;Cheng, Ke-Wen;Shi, Wei-Yin;Zhang, Jin-Tao;Liu, Ke-Di;Xu, Shu-Guang;Chen, Ji-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6375-6378
    • /
    • 2012
  • Background: Small-cell lung cancer (also known as SCLC) is an aggressive form and untreated patients generally die within about 3 months. To obtain further insight into mechanism underlying malignancy with this cancer, an miRNA synergistic regulatory network was constructed and analyzed in the present study. Method: A miRNA microarray dataset was downloaded from the NCBI GEO database (GSE27435). A total of 546 miRNAs were identified to be expressed in SCLC cells. Then a miRNA synergistic network was constructed, and the included miRNAs mapped to the network. Topology analysis was also performed to analyze the properties of the synergistic network. Consequently, we could identified constitutive modules. Further, common target genes of each module were identified with CFinder. Finally, enrichment analysis was performed for target genes. Results: In this study, a miRNA synergistic network with 464 miRNAs and 2981 edges was constructed. According to the topology analysis, the topological properties between the networks constructed by LC related miRNAs and LC unrelated miRNAs were significantly different. Moreover, a module cilque0 could be identified in our network using CFinder. The module included three miRNAs (hsa-let-7c, hsa-let-7b and hsa-let-7d). In addition, several genes were found which were predicted to be common targets of cilque0. The enrichment analysis demonstrated that these target genes were enriched in MAPK signaling pathways. Conclusions: Although limitations exist in the current data, the results uncovered here are important for understanding the key roles of miRNAs in SCLC. However, further validation is required since our results were based on microarray data derived from a small sample size.

Cyclophilin A as a New Therapeutic Target for Hepatitis C Virus-induced Hepatocellular Carcinoma

  • Lee, Jinhwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.5
    • /
    • pp.375-383
    • /
    • 2013
  • Hepatocellular carcinoma (HCC) related to hepatitis B virus (HBV) and hepatitis C virus (HCV) infections is thought to account for more than 80% of primary liver cancers. Both HBV and HCV can establish chronic liver inflammatory infections, altering hepatocyte and liver physiology with potential liver disease progression and HCC development. Cyclophilin A (CypA) has been identified as an essential host factor for the HCV replication by physically interacting with the HCV non structural protein NS5A that in turn interacts with RNA-dependent RNA polymerase NS5B. CypA, a cytosolic binding protein of the immunosuppressive drug cyclosporine A, is overexpressed in many cancer types and often associated with malignant transformation. Therefore, CypA can be a good target for molecular cancer therapy. Because of antiviral activity, the CypA inhibitors have been tested for the treatment of chronic hepatitis C. Nonimmunosuppressive Cyp inhibitors such as NIM811, SCY-635, and Alisporivir have attracted more interests for appropriating CypA for antiviral chemotherapeutic target on HCV infection. This review describes CypA inhibitors as a potential HCC treatment tool that is contrived by their obstructing chronic HCV infection and summarizes roles of CypA in cancer development.

Expressions of MicroRNA-150 and MicroRNA-424 Targeted to C-reactive Protein in Trophoblast Cell Line (영양막세포에서의 C-reactive protein 조절 microRNA-150과 microRNA-424 발현 분석)

  • Kim, Hee Sung
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.11
    • /
    • pp.375-382
    • /
    • 2019
  • Abnormalities of trophoblast due to early inflammation in pregnancy increase the expression of CRP and affect maternal-fetal interactions, leading to preterm birth and preeclampsia. However, biomarkers related to the regulation of CRP expression have not been found. In this study, miRNA associated with increased expression of CRP was identified and their expression was analyzed to reveal biomarkers involved in the regulation mechanism of trophoblast inflammation through miRNAs. miRNAs that were predicted to regulate CRP gene expression in miRNA databases (mirna, TargetScan, MicroCosm) were screened and HTR-8/SVneo cell lines were treated with LPS (20 ng/mL) to induce inflammatory responses in vitro, with selected miR-7, miR-150, miR-186 and miR-424. The expression was analyzed by qRT-PCR. As a result, expression of CRP was significantly increased in LPS-treated trophoblast (p<0.001) and miR-150 and miR-424 expression were significantly decreased (p<0.001). Thus, miR-150 and miR-424 are involved in the regulation of CRP expression in inflammatory-induced trophoblast and may be useful for the prenatal diagnosis of inflammatory obstetric diseases.

miR-3074-3p promotes myoblast differentiation by targeting Cav1

  • Lee, Bora;Shin, Yeo Jin;Lee, Seung-Min;Son, Young Hoon;Yang, Yong Ryoul;Lee, Kwang-Pyo
    • BMB Reports
    • /
    • v.53 no.5
    • /
    • pp.278-283
    • /
    • 2020
  • Muscle fibers are generally formed as multinucleated fibers that are differentiated from myoblasts. Several reports have identified transcription factors and proteins involved in the process of muscle differentiation, but the roles of microRNAs (miRNAs) in myogenesis remain unclear. Here, comparative analysis of the miRNA expression profiles in mouse myoblasts and gastrocnemius (GA) muscle uncovered miR-3074-3p as a novel miRNA showing markedly reduced expression in fully differentiated adult skeletal muscle. Interestingly, elevating miR-3074-3p promoted myogenesis in C2C12 cells, primary myoblasts, and HSMMs, resulting in increased mRNA expression of myogenic makers such as Myog and MyHC. Using a target prediction program, we identified Caveolin-1 (Cav1) as a target mRNA of miR-3074-3p and verified that miR-3074-3p directly interacts with the 3' untranslated region (UTR) of Cav1 mRNA. Consistent with the findings in miR-3074-3p-overexpressing myoblasts, knockdown of Cav1 promoted myogenesis in C2C12 cells and HSMMs. Taken together, our results suggest that miR-3074-3p acts a positive regulator of myogenic differentiation by targeting Cav1.

Construction of a Hammerhead Ribozyme that Cleaves Rice Black-Streaked Dwarf Virus RNA (흑조위축병 바이러스 RNA를 절단하는 망치머리형 라이보자임의 제작)

  • Kim, Ju-Kon;Sohn, Seong-Han;Lee, Sug-Soon;Hwang, Young-Soo;Park, Jong-Sug
    • Applied Biological Chemistry
    • /
    • v.38 no.6
    • /
    • pp.522-527
    • /
    • 1995
  • To develop an antiviral agent for the rice black-streaked dwarf virus (RBSDV), a hammerhead type ribozyme, which has a potential target site on the genome segment 3, was designed. Oligonucleotides for the ribozyme and its substrate were synthesized, annealed, and cloned into a plasmid pBluescript II KS(+). Ribozyme and substrate RNAs were then synthesized by in vitro transcription with $T_3$ RNA polymerase, obtaining RNAs in expected size, 193 and 182 nucleotides, respectively. The substrate RNA was efficiently cleaved into two fragments when incubated with the ribozyme at $55^{\circ}C$, while the cleavage was not detected at $37^{\circ}C$. In addition, the segment 3 RNA of RBSDV was also cleaved into two fragments by the same ribozyme at $55^{\circ}C$. Taken together, our results demonstrated that the hammerhead ribozyme has an in vitro endonucleolytic activity and may be used as an antiviral agent in transgenic plants.

  • PDF

The Terminal and Internal Hairpin Loops of the ctRNA of Plasmid pJB01 Play Critical Roles in Regulating Copy Number

  • Kim, Sam Woong;Jeong, In Sil;Jeong, Eun Ju;Tak, Je Il;Lee, John Hwa;Eo, Seong Kug;Kang, Ho Young;Bahk, Jeong Dong
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.26-33
    • /
    • 2008
  • The plasmid pJB01, a member of the pMV158 family isolated from Enterococcus faecium JC1, contains three open reading frames, copA, repB, and repC. Plasmids included in this family produce counter-transcribed RNA (ctRNA) that contributes to copy number control. The pJB01 ctRNA, a transcript which consists of 54 nucleotides (nts), is encoded on the opposite strand from the copA/repB intergenic region and partially overlaps an atypical ribosome binding site (ARBS) for repB. The ARBS is integrated by the two underlined conserved regions: 5'-TTTTTGTNNNNTAANNNNNNNNNATG-3', and the ctRNA is complementary only to the 5' conserved sequence 5'-TTTTTGT-3'. This complementary sequence is located at a distance from the terminal loop of the ctRNA secondary structure. The ctRNA structure predicted by the mfold program suggests the possible generation of a terminal and an internal hairpin loop. The amount of in vitro translation product of repB mRNA was inversely proportional to the ctRNA concentration. Mutations in the terminal and internal hairpin loops of the ctRNA had inhibitory effects on its binding to the target mRNA. We propose that the intact structures of the terminal and internal hairpin loops, respectively, play important roles in forming the initial kissing and extending complexes between the ctRNA and target mRNA and that these regulate the copy number of this plasmid.

Identification of Caenorhabditis elegans MicroRNA Targets Using a Kernel Method

  • Lee, Wha-Jin;Nam, Jin-Wu;Kim, Sung-Kyu;Zhang, Byoung-Tak
    • Genomics & Informatics
    • /
    • v.3 no.1
    • /
    • pp.15-23
    • /
    • 2005
  • Background MicroRNAs (miRNAs) are a class of noncoding RNAs found in various organisms such as plants and mammals. However, most of the mRNAs regulated by miRNAs are unknown. Furthermore, miRNA targets in genomes cannot be identified by standard sequence comparison since their complementarity to the target sequence is imperfect in general. In this paper, we propose a kernel-based method for the efficient prediction of miRNA targets. To help in distinguishing the false positives from potentially valid targets, we elucidate the features common in experimentally confirmed targets. Results The performance of our prediction method was evaluated by five-fold cross-validation. Our method showed 0.64 and 0.98 in sensitivity and in specificity, respectively. Also, the proposed method reduced the number of false positives by half compared with TargetScan. We investigated the effect of feature sets on the classification of miRNA targets. Finally, we predicted miRNA targets for several miRNAs in the Caenorhabditis elegans (C. elegans) 3' untranslated region (3' UTR) database. Condusions The targets predicted by the suggested method will help in validating more miRNA targets and ultimately in revealing the role of small RNAs in the regulation of genomes. Our algorithm for miRNA target site detection will be able to be improved by additional experimental­knowledge. Also, the increase of the number of confirmed targets is expected to reveal general structural features that can be used to improve their detection.

Inhibition of c-FLIP by RNAi Enhances Sensitivity of the Human Osteogenic Sarcoma Cell Line U2OS to TRAILInduced Apoptosis

  • Zhang, Ya-Ping;Kong, Qing-Hong;Huang, Ying;Wang, Guan-Lin;Chang, Kwen-Jen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2251-2256
    • /
    • 2015
  • To study effects of cellular FLICE (FADD-like IL-$1{\beta}$-converting enzyme)-inhibitory protein (c-FLIP) inhibition by RNA interference (RNAi) on sensitivity of U2OS cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, plasmid pSUPER-c-FLIP-siRNA was constructed and then transfected into U2OS cells. A stable transfection cell clone U2OS/pSUPER-c-FLIP-siRNA was screened from the c-FLIP-siRNA transfected cells. RT-PCR and Western blotting were applied to measure the expression of c-FLIP at the levels of mRNA and protein. The results indicated that the expression of c-FLIP was significantly suppressed by the c-FLIP-siRNA in the cloned U2OS/pSUPER-c-FLIP-siRNA as compared with the control cells of U2OS/pSUPER. The cloned cell line of U2OS/pSUPER-c-FLIP-siRNA was further examined for TRAILinduced cell death and apoptosis in the presence of a pan-antagonist of inhibitor of apoptosis proteins (IAPs) AT406, with or without 4 hrs pretreatment with rocaglamide, an inhibitor of c-FLIP biosynthesis, for 24 hrs. Cell death effects and apoptosis were measured by the methods of MTT assay with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and flow cytometry, respectively. The results indicated that TRAIL-induced cell death in U2OS/pSUPER-c-FLIP-siRNA was increased compared with control cells U2OS/pSUPER in the presence or absence of AT406. Flow cytometry indicated that TRAIL-induced cell death effects proceeded through cell apoptosis pathway. However, in the presence of rocaglamide, cell death or apoptotic effects of TRAIL were similar and profound in both cell lines, suggesting that the mechanism of action for both c-FLIP-siRNA and rocaglamide was identical. We conclude that the inhibition of c-FLIP by either c-FLIP-siRNA or rocaglamide can enhance the sensitivity of U2OS to TRAIL-induced apopotosis, suggesting that inhibition of c-FLIP is a good target for anti-cancer therapy.

Functional Analysis of the Residues C770 and G771 of E. coli 16S rRNA Implicated in Forming the Intersubunit Bridge B2c of the Ribosome

  • Kim, Hong-Man;Yeom, Ji-Hyun;Ha, Hye-Jung;Kim, Jong-Myung;Lee, Kang-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1204-1207
    • /
    • 2007
  • Structural analyses have shown that nucleotides at the positions 770 and 771 of Escherichia coli 16S rRNA are implicated in forming one of highly conserved intersubunit bridges of the ribosome, B2c. To examine a functional role of these residues, base substitutions were introduced at these positions and mutant ribosomes were analyzed for their protein synthesis ability using a specialized ribosome system. The results showed requirement of a pyrimidine at the position 770 for ribosome function regardless of the nucleotide identity at the position 771. Sucrose gradient profiles of ribosomes revealed that the loss of protein-synthesis ability of mutant ribosome bearing a base substitution from C to G at the position 770 stems from its inability to form 70S ribosomes. These findings indicate involvement of nucleotide at the position 770, not 771, in ribosomal subunit association and provide a useful rRNA mutation that can be used as a target to investigate the physical interaction between 16S and 23S rRNA.

Silence of LncRNA GAS5 Protects Cardiomyocytes H9c2 against Hypoxic Injury via Sponging miR-142-5p

  • Du, Jian;Yang, Si-Tong;Liu, Jia;Zhang, Ke-Xin;Leng, Ji-Yan
    • Molecules and Cells
    • /
    • v.42 no.5
    • /
    • pp.397-405
    • /
    • 2019
  • The regulatory role of long noncoding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) in both cancerous and noncancerous cells have been widely reported. This study aimed to evaluate the role of lncRNA GAS5 in heart failure caused by myocardial infarction. We reported that silence of lncRNA GAS5 attenuated hypoxia-triggered cell death, as cell viability was increased and apoptosis rate was decreased. This phenomenon was coupled with the down-regulated expression of p53, Bax and cleaved caspase-3, as well as the up-regulated expression of CyclinD1, CDK4 and Bcl-2. At the meantime, the expression of four heart failure-related miR-NAs was altered when lncRNA GAS5 was silenced (miR-21 and miR-142-5p were up-regulated; miR-30b and miR-93 were down-regulated). RNA immunoprecipitation assay results showed that lncRNA GAS5 worked as a molecular sponge for miR-142-5p. More interestingly, the protective actions of lncRNA GAS5 silence on hypoxia-stimulated cells were attenuated by miR-142-5p suppression. Besides, TP53INP1 was a target gene for miR-142-5p. Silence of lncRNA GAS5 promoted the activation of PI3K/AKT and MEK/ERK signaling pathways in a miR-142-5p-dependent manner. Collectively, this study demonstrated that silence of lncRNA GAS5 protected H9c2 cells against hypoxia-induced injury possibly via sponging miR-142-5p, functionally releasing TP53INP1 mRNA transcripts that are normally targeted by miR-142-5p.