• 제목/요약/키워드: cGMP production

검색결과 81건 처리시간 0.032초

흰쥐 대동맥에서 cyclic nucleotide phosphodiesterase 억제제들의 혈관 이완 특성 (Vasorelaxant properties of cyclic nucleotide phosphodiesterase inhibitors in rat aorta)

  • 강형섭;최철호;김진상
    • 대한수의학회지
    • /
    • 제43권4호
    • /
    • pp.615-624
    • /
    • 2003
  • Vascular smooth muscle relaxation is modulated by an increase in cGMP subsequent to nitric oxide (NO) production by endothelial cells. The effects of cAMP and cGMP phosphodiesterase (PDE) inhibitors were investigated in phenylephrine-precontracted rat aorta rings by using the specific inhibitors of PDE I, III, IV and V as relaxing agents (calmodulin-activated PDE inhibitors, IBMX and $W_7$, type I; cAMP-specific PDE inhibitors, milrinone, type IV; Ro 20-1724, type III and cGMP-specific PDE inhibitor, zaprinast, type V). All the PDE inhibitors produced a concentration-dependent relaxation in the ring with intact endothelium (+E). Except for milrinone, all the PDE inhibitors-induced relaxations were inhibited by removal of extracellular $Ca^{2+}$, $N^G$-nitro-L-arginine, $N^G$-nitro-L-arginine methyl ester, methylene blue (MS) or nifedipine. The specific PDE I and PDE IV inhibitors both produced endothelium-independent relaxations which were inhibited by MS in -E rings. However, zaprinast had no effect in -E rings. Except for milrinone, sodium nitroprusside (a NO donor)-induced relaxation was significantly augmented by all PDE inhibitors in +E rings. The results suggest that I) the vasorelaxant properties of IBMX, $W_7$, Ro 20-1724 and zaprinast are dependent on endothelium or on interaction with $Ca^{2+}$ regulation, 2) each PDE is differently distributed in vascular tissues (endothelial and smooth muscle cells), 3) the vasodilations of PDE inhibitors are due to the increase of cAMP and cGMP formation through inhibition of cAMP- and cGMP-PDE and 4) the vasodilation action of milrinone does not involve in endothelial-cyclic nucleotide system.

동맥경화 예방과 치료를 위한 연구시도: Nitric Oxide의 역활 -광 유도 nitric oxide(PIANO)의 혈관이완에 따른 cyclic GMP의 증가 (Possible Role of Nitric Oxide in Prevention of Atherosclerosis: Photo-induced adequate nitric oxide (PIANO)-mediated relaxation involves cyclic GMP increment)

  • 장기철;정원석;박병욱;이승엽;고학준
    • 대한약리학회지
    • /
    • 제30권3호
    • /
    • pp.331-336
    • /
    • 1994
  • 본 연구의 목적은 광 유도에 의한 nitric oxide (PIANO)유리가 혈관이완에 대해 cyclic GMP (cGMP)가 관여하는 지의 여부와 아울러 ${\alpha}$-수용체를 통한 수축에 PIANO가 어떻게 작용하는 지를 파악하고자 하였다. In vitro 실험에서 흰쥐의 대동맥을 준 최고농도의 phenylephrine (PE)으로 수축시킨 후 nitric oxide 생성을 변화시키는 약물이나 광민감성 (photosensitizing) 약물에 대한 반응을 등장력 변화로 기록하였다. PIANO에 의한 혈관이완은 광노출 강도와 기간 및 광민감성 약물농도에 비례하여 증가하였고 cGMP의 증가를 수반하였다. PE에 의해 증대되는 phosphatidylinositide(PI) 전환은 PIANO에 의해 억제되었다. 이상의 결과는 cGMP의 증가로 인해 PIANO에 의한 혈관이완이 일어나며 ${\alpha}$-아드레날성 수용체 자극에 의한 PI 전환의 억제현상은 cGMP 증가의 결과로 생각할 수 있다. 결론적으로 PIANO에 의한 혈관이완은 cGMP의 증가로 인함을 확인할 수 있었다.

  • PDF

식물추출복합발효물(MP119)이 성기능에 미치는 영향 및 카드뮴 독성에 대한 효과 (Effect of Phyto-Extract Fermented Mixture (MP119) on the Sexual Functions and on the Toxicities of Cadmium)

  • 장영선;정종문
    • 한국식품영양과학회지
    • /
    • 제38권12호
    • /
    • pp.1724-1731
    • /
    • 2009
  • 마카, 홍삼, 남가새 추출물을 일정한 무게 비율로 혼합하여 발효시켜 얻어진 식물추출복합발효물(MP119)이 성기능에 미치는 영향을 조사하였다. ACE(angiotensin converting enzyme)과 PDE(phosphodiesterase)에 대한 저해효과를 통해 혈액순환부진 개선 및 cGMP 농도에 의한 발기능 개선에 미치는 효과를 측정하였다. MP119의 ACE 저해효과를 측정한 결과 $IC_{50}$값이 241.3${\pm}$35.5 ppm, PDE 저해효과를 측정한 결과 $IC_{50}$값이 372.2${\pm}$33.8 ppm으로 나타나 혈관확장으로 인한 혈류량 증가 및 cGMP농도 증가에 영향을 줄 수 있을 것으로 예상된다. MP119는 마우스 정소세포인 TM3 cell에 유의성 있는 독성이 나타나지 않았으며, TM3 cell에 농도별로 처리했을 때 세포배양액으로부터 대조군과 비교하여 최대 20.11% 증가한 testosterone 농도를 확인하였다. 또한 HUVEC에 농도별로 처리했을 때 NO생산량이 MP119 처리 농도가 증가할수록 유의성 있게 증가하였다. 웅성마우스에 MP119를 7일간 경구투여 후 생식장기의 무게와 정자수를 측정하고, MP119를 경구투여한 후 염화카드뮴을 투여하여 생식장기의 무게와 정자수를 측정하였다. 또한 실험쥐로부터 혈청을 분리하여 혈청 내 testosterone과 cGMP를 측정하였다. 그 결과 MP119의 투여를 통해 생식장기의 무게 변화 없이 정자수 증가에 도움을 준다는 것을 확인하였으며, 더불어 혈청 내 testosterone 및 cGMP의 농도 역시 증가하였다. MP119를 투여한 후 염화카드뮴을 투여한 실험군에서 역시 정자수 및 혈청 내 testosterone, cGMP 농도 증가를 나타내었으므로 결과적으로 MP119가 염화카드뮴의 독성예방 및 치료에 효과적임을 확인하였다.

LIPOPHILIC FRACTION FROM KOREAN RED GINSENG REGULATES THE PHOSPHORYLATION OF PLATELET PROTEIN(50KD) BY ELEVATING CYCLIC-GMP IN VIVO AND IN VITRO

  • Park H.J.;Rhee M.H.;Park K.M.;Nam K.Y.;Lee J.H.;Park K.H.
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1993년도 학술대회지
    • /
    • pp.94-101
    • /
    • 1993
  • Lipophilic fraction(LF) from Panax ginseng C.A. Meyer inhibited the aggregation of human platelets induced by th rombin(0.1u/$m{\ell}$). LF and Molsidomine(vasodilator) induced the stimulation of cGMP - elevation and 50KD - Phosphorylation. and then the inhibition of 20KD - Phosphorylation in human platelets activated by thrombin. LF also inhibited the $Ca^{2-}-influx$ into platelets. When rat(SD : male) was fed with LF, the level of cGMP was increased in rat platelets stimulated by collagen and thrombin. On the other hand. verapamil, $Ca^{2-}-antagonist$ increased cAMP level ;n platelet stimulated by thrombin. but LF does not affected. However LF potently inhibited the thromboxane $A_2(TXA_2)$ production. The results suggest that the inhibitory effects of LF are mediated by regulation the phosphorylatior. of 50KD via cGMP-elevation and depend upon the decrease of $TXA_2$ level.

  • PDF

Ethanol Extract of Cynanchum wilfordii Produces Endothelium-Dependent Relaxation in Rat Aorta and Anti-inflammatory Activity in Human Aortic Smooth Muscle Cells

  • Choi, Deok-Ho;Lee, Yun-Jung;Kim, Eun-Joo;Li, Xiang;Kim, Hye-Yoom;Hwang, Sun-Mi;Yoon, Jung-Joo;Lee, So-Min;Min, Eun-Kyeong;Kang, Dae-Gill;Lee, Ho-Sub
    • 대한한의학회지
    • /
    • 제31권6호
    • /
    • pp.47-57
    • /
    • 2010
  • Objective: The present study investigated the effect of ethanol extract of Cynanchum wilfordii (ECW) on vascular relaxation and vascular inflammation in rat artery isolated from rats and anti-inflammatory activity in human aortic smooth muscle cells (HASMC). Methods: Vascular tone and guanosine 3',5'-cyclic monophosphate (cGMP) production were examined in rat artery isolated from Sprague Dawley rats, in the presence of ECW. HASMC were incubated with tumor necrosis factor-alpha (TNF-${\alpha}$) or Angiotensin II for 24 h. Matrix metalloproteinase (MMP)-2 and anti-oxidant activity of ECW was investigated by pretreatment with ECW in HASMC. Results: Cumulative treatment of ECW relaxed aortic smooth muscles of rats in a dose-dependent manner. ECW-induced vasorelaxation was significantly decreased by pretreatment of L-arginine methyl ester (L-NAME) or oxadiazolo-quinoxalinone (ODQ). Furthermore, ECW treatment of thoracic aorta significantly increased cGMP production. Incubation of ECW with ODQ or L-NAME markedly decreased ECW-induced cGMP production. ECW treatment dose-dependently suppressed TNF-${\alpha}$- or Angiotensin II-induced increase in matrix metalloproteinase-2 expression in HASMC. Also, ECW exhibited 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity in vitro and reduced TNF-${\alpha}$-induced increase in reactive oxygen species production in a dose-dependent manner. Conclusions: Taken together, the results suggest that ECW exerts vascular relaxation via NO/cGMP signaling pathway and decreases MMP-2 expression via anti-oxidant activity.

Spinach Saponin-Enriched Fraction Inhibits Platelet Aggregation in cAMP- and cGMP-Dependent Manner by Decreasing TXA2 Production and Blood Coagulation

  • Cho, Hyun-Jeong;Choi, Sun-A;Kim, Chun-Gyu;Jung, Tae-Sung;Hong, Jeong-Hwa;Rhee, Man-Hee;Park, Hye-Jin;Park, Hwa-Jin
    • Biomolecules & Therapeutics
    • /
    • 제19권2호
    • /
    • pp.218-223
    • /
    • 2011
  • In this study, we investigated the effect of spinach saponin-enriched fraction (SSEF) on collagen (10 ${\mu}g/ml$)-stimulated platelet aggregation. SSEF inhibited collagen-induced platelet aggregation, and which was involved in the inhibition of thromboxane $A_2$ ($TXA_2$) production, an intracellular $Ca^{2+}$-agonist as an aggregation-inducing autacoidal molecule. In addition, SSEF significantly increased the formation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), intracellular $Ca^{2+}$-antagonists as aggregation-inhibiting molecules, in collagen-stimulated platelets. These results suggest that SSEF might inhibit $Ca^{2+}$-elevation and $TXA_2$ formation by increasing the production of $Ca^{2+}$-antagonistic molecules cAMP and cGMP. These mean that SSEF is a potent inhibitor of collagen-stimulated platelet aggregation. On the other hand, prothrombin time (PT) and activated partial thromboplastin time (APTT) were potently prolonged by SSEF. These findings suggest that SSEF prolongs the internal time between the conversion of fibrinogen to fibrin. Accordingly, our data demonstrate that SSEF may be a crucial tool for a negative regulator during platelet activation and blood coagulation on thrombotic diseases.

Inhibitory Effect of Cordycepin on Human Platelet Aggregation

  • Cho, Hyun-Jeong;Ham, Hye-Seon;Lee, Tae-Kyung;Jung, Young-Jin;Park, Sun-A;Kang, Hyo-Chan;Park, Hwa-Jin
    • 대한의생명과학회지
    • /
    • 제10권1호
    • /
    • pp.1-8
    • /
    • 2004
  • Cordycepin separated from Cordyceps militaris is a major physiologic active component in Cordyceps militaris. The platelet aggregation is stimulated by $Ca^{2+}$, which is either mobilized from intracellular endoplasmic reticulum or transported from extracellular space. cGMP antagonizes the actions of $Ca^{2+}$. Based on these facts, we have investigated the effects of cordycepin on the mobilization of $Ca^{2+}$ and the production of cGMP on collagen ($10\mu$g/ml)-induced human platelet aggregation. Cordycepin potently stimulated the human platelet aggregation induced by collagen ($10\mu$g/ml) in a dose-dependent manner. Cordycepin (500 $\mu$M) inhibited also the collagen-induced human platelet aggregation in the presence both 1 mM and 2 mM of $CaCl_2$. These are in accord with the results that cordycepin inhibited the $Ca^{2+}$- influx on collagen-induced human platelet aggregation. These results suggest that cordycepin decrease the intracellular $Ca^{2+}$ concentration to inhibit collagen-induced human platelet aggregation. Besides, cordycepin increased the level of cGMP on collagen-induced human platelet aggregation. This result is related with the decrease of intracellular $Ca^{2+}$ concentration, because cGMP inhibits the mobilization of $Ca^{2+}$. In addition, cordycepin inhibited the human platelet aggregation induced by LY -83583, inhibitor of guanylate cyclase. This result suggested that cordycepin inhibit the platelet aggregation by stimulating the activity of guanylate cyclase. In conclusion, we demonstrated that cordycepin might have the antiplatelet function by inhibiting $Ca^{2+}$-mobilization via the stimulation of the production of cGMP.

  • PDF

비구면 유리 렌즈 금형의 열응력 해석 (Thermal stress analysis for an aspheric glass lens mold)

  • 이영민;장성호;허영무;신광호;윤길상;정태성
    • 한국정밀공학회지
    • /
    • 제25권12호
    • /
    • pp.125-131
    • /
    • 2008
  • In the past, precision optical glass lenses were produced through multiple processes such as grinding and polishing, but mass production of aspheric lenses requiring high accuracy and having complex profile was rather difficult. In such a background, the high-precision optical GMP processes were developed with an eye to mass production of precision optical glass parts by molding press. Generally because the forming stage in a GMP process is operated at high temperature above $570^{\circ}C$, thermal stresses and deformations are generated in the aspheric glass lens mold that is used in GMP process. Thermal stresses and deformations have negative influences on the quality of a glass lens and mold, especially the height of the deformed glass lens will be different from the height of designed glass lens. To prevent the problems of a glass lens mold and the glass lens, it is very important that the thermal stresses and deformations of a glass lens mold at high forming temperature are considered at the glass molds design step. In this study as a fundamental study to develop the molds used in an aspheric glass lens fabrication, a heat transfer and a thermal stress analysis were carried out for the case of one cavity glass lens mold used in progressive GMP process. Finally using analysis results, it was predicted the height of thermally deformed guide ring and calculated the height of the guide ring to be modified, $64.5{\mu}m$. This result was referred to design the glass lens molds for GMP process in production field.

Cordycepin (3'-deoxyadenosine) Has an Anti-platelet Effect by Regulating the cGMP-Associated Pathway of Human Platelet Activation

  • Cho, Hyun-Jeong;Rhee, Man-Hee;Cho, Jae-Youl;Kim, Hyeong-Soo;Ok, Woo-Jeong;Kang, Hee-Jin;Park, Hwa-Jin
    • Preventive Nutrition and Food Science
    • /
    • 제12권3호
    • /
    • pp.141-147
    • /
    • 2007
  • Cordycepin (3'-deoxyadenosine), which comes from Cordyceps militaris, the Chinese medicinal fungal genus Cordyceps, is used in the treatment of various diseases such as cancer and chronic inflammation. We recently reported that cordycepin has a novel antiplatelet effect through the down regulation of $[Ca^{2+}]_{i}$ and the elevation of cGMP/cAMP production. In this study, we further investigated the effect of cordycepin on collagen-induced platelet aggregation in the presence of cGMP-dependent protein kinase (PKG)- or cAMP-dependent protein kinase (PKA)-inhibitor. PKG inhibitor Rp-8-pCPT-cGMPS potentiated the collagen-induced platelet aggregation, but PKA inhibitor Rp-8-Br-cAMPS did not. However, both Rp-8-pCPT-cGMPS and Rp-8-Br-cAMPS reduced inhibition by cordycepin of collagen-induced platelet aggregation. Moreover, cordycepin inhibited $Ca^{2+}-dependent$ phosphorylation of both 47 kDa- and 20 kDa-protein in the presence of both PKG inhibitor and PKA inhibitor. Taken altogether, these results suggest that the inhibitory effect of cordycepin on collagen-induced platelet aggregation is associated with cGMP/PKG- and cAMP/PKA-pathways, and thus cordycepin may be an efficacious intervention against platelet aggregation-mediated thrombotic disease.

Transcriptional and Mycolic Acid Profiling in Mycobacterium bovis BCG In Vitro Show an Effect for c-di-GMP and Overlap between Dormancy and Biofilms

  • Cruz, Miguel A. De la;Ares, Miguel A.;Rodriguez-Valverde, Diana;Vallejo-Cardona, Alba Adriana;Flores-Valdez, Mario Alberto;Nunez, Iris Denisse Cota;Aceves-Sanchez, Michel de Jesus;Lira-Chavez, Jonahtan;Rodriguez-Campos, Jacobo;Bravo-Madrigal, Jorge
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권6호
    • /
    • pp.811-821
    • /
    • 2020
  • Mycobacterium tuberculosis produces mycolic acids which are relevant for persistence, recalcitrance to antibiotics and defiance to host immunity. c-di-GMP is a second messenger involved in transition from planktonic cells to biofilms, whose levels are controlled by diguanylate cyclases (DGC) and phosphodiesterases (PDE). The transcriptional regulator dosR, is involved in response to low oxygen, a condition likely happening to a subset of cells within biofilms. Here, we found that in M. bovis BCG, expression of both BCG1416c and BCG1419c genes, which code for a DGC and a PDE, respectively, decreased in both stationary phase and during biofilm production. The kasA, kasB, and fas genes, which are involved in mycolic acid biosynthesis, were induced in biofilm cultures, as was dosR, therefore suggesting an inverse correlation in their expression compared with that of genes involved in c-di-GMP metabolism. The relative abundance within trehalose dimycolate (TDM) of α-mycolates decreased during biofilm maturation, with methoxy mycolates increasing over time, and keto species remaining practically stable. Moreover, addition of synthetic c-di-GMP to mid-log phase BCG cultures reduced methoxy mycolates, increased keto species and practically did not affect α-mycolates, showing a differential effect of c-di-GMP on keto- and methoxy-mycolic acid metabolism.