• 제목/요약/키워드: cGMP

검색결과 318건 처리시간 0.026초

Ethanol Extract of Cynanchum wilfordii Produces Endothelium-Dependent Relaxation in Rat Aorta and Anti-inflammatory Activity in Human Aortic Smooth Muscle Cells

  • Choi, Deok-Ho;Lee, Yun-Jung;Kim, Eun-Joo;Li, Xiang;Kim, Hye-Yoom;Hwang, Sun-Mi;Yoon, Jung-Joo;Lee, So-Min;Min, Eun-Kyeong;Kang, Dae-Gill;Lee, Ho-Sub
    • 대한한의학회지
    • /
    • 제31권6호
    • /
    • pp.47-57
    • /
    • 2010
  • Objective: The present study investigated the effect of ethanol extract of Cynanchum wilfordii (ECW) on vascular relaxation and vascular inflammation in rat artery isolated from rats and anti-inflammatory activity in human aortic smooth muscle cells (HASMC). Methods: Vascular tone and guanosine 3',5'-cyclic monophosphate (cGMP) production were examined in rat artery isolated from Sprague Dawley rats, in the presence of ECW. HASMC were incubated with tumor necrosis factor-alpha (TNF-${\alpha}$) or Angiotensin II for 24 h. Matrix metalloproteinase (MMP)-2 and anti-oxidant activity of ECW was investigated by pretreatment with ECW in HASMC. Results: Cumulative treatment of ECW relaxed aortic smooth muscles of rats in a dose-dependent manner. ECW-induced vasorelaxation was significantly decreased by pretreatment of L-arginine methyl ester (L-NAME) or oxadiazolo-quinoxalinone (ODQ). Furthermore, ECW treatment of thoracic aorta significantly increased cGMP production. Incubation of ECW with ODQ or L-NAME markedly decreased ECW-induced cGMP production. ECW treatment dose-dependently suppressed TNF-${\alpha}$- or Angiotensin II-induced increase in matrix metalloproteinase-2 expression in HASMC. Also, ECW exhibited 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity in vitro and reduced TNF-${\alpha}$-induced increase in reactive oxygen species production in a dose-dependent manner. Conclusions: Taken together, the results suggest that ECW exerts vascular relaxation via NO/cGMP signaling pathway and decreases MMP-2 expression via anti-oxidant activity.

월견자 물 분획층을 이용한 혈관이완 기전에 관한 연구 (Vascular Relaxation Induced by the Water Soluble Fraction of the Seeds from Oenothera Odorata)

  • 김혜윰;이윤정;윤정주;고민철;한병혁;최은식;박지훈;강대길;이호섭
    • 동의생리병리학회지
    • /
    • 제29권6호
    • /
    • pp.492-497
    • /
    • 2015
  • In the present study, vasorelaxant effect of the extract of seeds of Oenothera odorata (SOO) and its possible mechanism responsible for this effect were examined in vascular tissues isolated from rats. Changes in vascular tension, 3',5'-cyclic monophosphate (cGMP) levels were measured in thoracic aorta rings from rats. Methanol extract of seeds of Oenothera odorata relaxed endothelium-intact thoracic aorta in a dose-dependent manner. A dose-dependent vascular relaxation was also revealed by treatment of ethylacetate, n-butanol, and H2O (aqua extract of seeds of Oenothera odorata , ASOO) extracts partitioned from methanol, but not by hexane extract. However, the vascular relaxation induced by ASOO were abolished by removal of endothelium of aortic tissues. Pretreatment of the endothelium-intact vascular tissues with NG-nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4]-oxadiazole-[4,3-α]-quinoxalin-1- one (ODQ) significantly inhibited vascular relaxation induced by ASOO. Moreover, incubation of endothelium-intact aortic rings with ASOO increased the production of cGMP. However, ASOO-induced increases in cGMP production were blocked by pretreatment with L-NAME or ODQ. The vasorelaxant effect of ASOO was attenuated by tetraethylammonium (TEA), 4-aminopyridine, and glibenclamide attenuated. On the other hand, the ASOO-induced vasorelaxation was not blocked by verapamil, and diltiazem. Taken together, the present study demonstrates that ASOO dilate vascular smooth muscle via endothelium-dependent NO-cGMP signaling pathway, which may be closely related with the function of K+ channels.

소 수정란의 생산체계가 세포막 투과력 및 GMP Vitrification 동결융해 후 생존성에 미치는 영향 (Effects of Embryo Sources and Culture Systems on the Membrane Permeability and Viability of Bovine Blastocysts Cryopreserved by GMP Vitrification)

  • Kong, I.K.;Cho, S.G.
    • 한국가축번식학회지
    • /
    • 제25권2호
    • /
    • pp.191-198
    • /
    • 2001
  • 본 연구는 체내, 체외수정란 및 배양체계가 세포막투과력 및 GMP vitrification후 생존성에 미치는 영향을 조사하고자 실시하였다. 체내수정란은 6마리 한우를 FSH와 PG $F_{2{\alpha}}$ 에 의한 과배란처리하여 생산하였다. 체외수정란은 난관상피세포 공배양 (OCS) 및 HECM-6 (DCS) 방법으로 생산하였다. 생산된 배반포기 배는 세포력투과력과 GMP vitrification 후 생존성의 조사를 위하여 사용되었다. 세포력투과력은 35$^{\circ}C$ 가온판과 0.5 M sucrose 용액에서 0, 2, 5 및 7분간의 노출시간에 세포질의 “가로 $\times$ 세로”의 직경을 조사하였다. 세포질의 용적은 조사한 직경을 4/3.$\pi$ $r^3$ 공식으로 계산하였다. 배반포의 동결보존은 GMP vitrification 방법으로 실시하였으며, 융해 후 0.25와 0.15 M sucrose 용액 및 TCM199에 각각 5분간 세척한 후 TCM199에 24 또는 48시간동안 배양하였다. 체내수정란의 0, 2, 5 및 7분 때의 용적변화(100, 37.1, 34.3 및 31.6%)는 OCS(100, 59.8, 48.9 및 47.9%)와 DCS(100, 57.2, 47.3 및 46.9%) 보다 유의적으로 높게 수축되었다(P<0.05). 또한 체내수정란(93.6%)의 동결융해 후 생존성은 OCS 및 DCS (81.9 및 83.6%) 보다 유의적으로 높았다(P<0.05). 현 배양체계에서 체외수정란의 형태는 체내수정란과 유사하였지만, 세포막투과력 및 응해 후 생존성 등의 질적인 면에서는 큰 차이를 보였다. 결론적으로 세포력 투과력 및 동결융해 후 생존성 등의 질적인 면에서 체내수정란은 OCS 또는 DCS 배양체계에서 생산된 체외수정란보다 우수하였다.

  • PDF

인체 및 토끼 위선세포에서 인삼사포닌의 위산분비 매개 신호전달체계에 미치는 영향 (Effects of Ginsenosides on Acid Secretion in Gastric Cells Isolated from Human and Rabbit Gastric Mucosa)

  • 김혜영;김신일;김경환
    • Journal of Ginseng Research
    • /
    • 제22권1호
    • /
    • pp.22-31
    • /
    • 1998
  • Antiulcer effects of ginseng saponin, acidic polysaccharide and methanol extract of Panax ginseng in the patients and experimental animals were reported. Postulated action mechanisms of ginseng were histamine-Ht receptor blocking and increasing gastric blood flow In the present study, the effect of ginsenosides, the biologically active glycosides of ginseng, on gastric acid secretion was examined using gastric cells isolated from human and rabbit gastric mucosa. Ginseng saponin, ginsenoside $Rb_1$, $Rb_2$, $Rg_1$ and $Rh_2$ were tested in unstimulated as well as stimulated gastric cells. Histamine ($10^4$M) and 3-isobutyl-1-methylxanthine ($10^4$M) were used as secretagogues. To investigate the mechanism of ginsenosides on acid secretion, the levels of cAMP and cGMP were monitored in gastric cells. As a result, high concerltration(1mg/ml) of ginseng saponin showed 73-75% of stimulated acid secretion in control gastric cells. However, ginseng saponin had no effect on unstimulated acid secretion and the levels of cGMP and cAMP in gastric cells. Ginsenoside $Rb_1$, $Rb_2$ and $Rh_2$ significantly inhibited stimulated acid secretion. Gastric cGMP levels were increased by all ginsenosides tested while cAMP levels were increased by all ginsenosides in unstimulated state of gastric cells, but increased by ginsenosides ginsenoside $Rg_1$ and $Rh_2$in stimulated state of gastric cells. The results suggest that inhibition of ginseng saponin on gastric acid secretion represents a complex effect of individual ginsenosides, which produce a range of effect on acid secretion. The inhibition site of ginseng saponin on stimulated acid secretion is postulated as post cAMP levels in acid secretary pathway such as protein phosphorylation or proton pump. Nitric oxide may not be involved in the inhibitory effect of ginseng saponin on stimulated acid secretion.

  • PDF

Thrombin성 혈소판응집에 대한 Amitriptyline, Sertraline 및 Chlorpromazine의 억제작용 (Inhibitory Effects of Amitriptyline, Sertraline and Chlorpromazine on the Thrombin-induced Aggregation of Platelets)

  • 최상현;이영재;신경호;천연숙;전보권
    • 대한약리학회지
    • /
    • 제31권3호
    • /
    • pp.299-311
    • /
    • 1995
  • 혈소판은 혈전기전의 중요요소로, monoamine성 신경전달물질의 대사에 있어서 신경계와 유사점을 가지고 있다. 따라서 항우울약물인 amitriptyline (AMT)과 sertraline (SRT)의 혈소판응집 억제와 이에 의한 세포내 신호전달 물질의 함량변동 및 단백인산화에 대한 영향을 chlorpromazine (CPZ)과 비교연구함으로써, 이들 약물의 혈소판응집 억제작용의 효능을 검정하고, 항 혈소판 및 항우울 작용기전의 일단을 규명하고자 하였다. SRT, CPZ 및 AMT은 thrombin (0.25 unit/ml)에 의한 혈소판응집을 억제하였으며, 각각의 IC50은 $4.37{\times}10^{-5}\;M$, $5.76{\times}10^{-5}\;M$$1.15{\times}10^{-4}\;M$이었다. 이러한 억제효과는 A23187$(1.0\;{\mu}M)$및 PMA(320 nM)에 의한 혈소판응집에 대해서도 유사하게 나타났다. thrombin은 혈소판응집과 아울러 thromboxane $B_2$$prostaglandin\;E_2$ 생성을 유의하게 증가시켰으며, 이러한 arachidonic acid 생성은 CPZ, AMT 및 SRT에 의하여 현저하게 억제되었다. CPZ, AMT 및 SRT은 cAMP 함량을 용량의존적으로 감소시켰으며, SRT, AMT $(1{\times}10^{-4}\;M)$ 및 CPZ $(3{\times}10^{-5}\;M)$은 cGMP 함량을 증가시키는 경향을 보였다. 한편, $Ins(1,4,5)P_3$ 함량은 thrombin 부하 후 10초 이내에 정점에 도달한 후 45초 이후까지 유지된다. CPZ과 AMT은 혈소판의 $Ins(1,4,5)P_3$ 함량을 현저히 증가시키며, thrombin에 의한 증가도 유의하게 증강시킨다. SRT은 혈소판의 $Ins(1,4,5)P_3$을 증가시키나, thrombin 부하 후 증강되지는 않았다. $Ins(1,4,5)P_3$ 증가에 이어서, $[Ca^{2+}]_i$은 thrombin 부하 후 20초에 최고점에 이르며, 이러한$[Ca^{2+}]_i$, 증가는 세 약물에 의하여 현저하게 억제되었다. 혈소판 단백인산화에 대해서, thrombin은 $41{\sim}43\;kDa$ 및 20kDa 단백인산화를 현저하게 증가시켰으며, 이는 AMT, SRT 및 CPZ에 의하여 억제되었다. CPZ, AMT 및 SRT 등의 세 약물은 유의한 항응집효과와 thromboxane생성억제 효과를 나타냈으며, 이들 약물에 의한 protein kinase C 활성억제 및 $Ins(1,4,5)P_3$의 함량증가는 각각 이들약물의 항응집효과 및 항우울성 작용기전과 연관될 수 있음을 시사한다.

  • PDF

심근세포 및 혈관 평활근에 대한 Nitric Oxide 작용의 민감성의 차이 (Nitric Oxide Modulates Calcium Current in Cardiac Myocytes but not in Intact Atrial Tissues)

  • 박춘옥;강영진;이회영;장기철
    • 대한약리학회지
    • /
    • 제31권3호
    • /
    • pp.279-284
    • /
    • 1995
  • 본 연구의 목적은 외부에서 nitric oxide (NO)를 투여 하였을때 심근 수축력, 심박동수의 변화 및 혈관 평활근에 대한 효과를 비교함으로서 NO에 대한 이들 장기의 민감도가 서로 같은지 또는 상이한지를 알아보고자 하였다. 본 실험에서는 PIANO 방법에 의한 근장력의 변화와 아울러 심근에서의 $Ca^{2+}$ current를 측정하였다. 랫트의 심방근에 대한 PIANO $(STZ,\;100\;{\mu}M)$는 심근수축력 및 심박동수에 전혀 변화를 주지 않았지만 혈관 평활근에서는 강한 이완 작용을 나타내었다. 한편, 8-Br-cGMP도 고농도 $(100\;{\mu}M)$에서만 심근 수축력을 억제하였다. 토끼의 심방근세포에서 Whole cell voltage patch clamp를 사용시 bradykinin, SNP, 8-Br-cGMP 및 PIANO는 $Ca^{2+}$ current를 억제하였다. 이러한 사실은 외부에서 공급되는 NO에 대한 심근과 혈관 평활근의 반응에는 민감도의 차이가 있음을 암시하며 더 나아가 심근의 경우에도 NO 반응에는 종 (species)간의 차이와 동일 종이라 하더라도 세포(cell)와 장기(tissue)에 차이가 있을 가능성을 제시하였다.

  • PDF

Inhibitory Effect of Ginkgolide B on Platelet Aggregation in a cAMP- and cGMP-dependent Manner by Activated MMP-9

  • Cho, Hyun-Jeong;Nam, Kyung-Soo
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.678-683
    • /
    • 2007
  • Extracts from the leaves of the Ginkgo biloba are becoming increasingly popular as a treatment that is claimed to reduce atherosclerosis, coronary artery disease, and thrombosis. In this study, the effect of ginkgolide B (GB) from Ginkgo biloba leaves in collagen (10 ${\mu}g/ml$)-stimulated platelet aggregation was investigated. It has been known that human platelets release matrix metallo-proteinase-9 (MMP-9), and that it significantly inhibited platelet aggregation stimulated by collagen. Zymographic analysis confirmed that pro-MMP-9 (92-kDa) was activated by GB to form an MMP-9 (86-kDa) on gelatinolytic activities. And then, activated MMP-9 by GB dose-dependently inhibited platelet aggregation, intracellular $Ca^{2+}$ mobilization, and thromboxane $A_2$ ($TXA_2$) formation in collagen-stimulated platelets. Activated MMP-9 by GB directly affects down-regulations of cyclooxygenase-1 (COX-1) or $TXA_2$ synthase in a cell free system. In addition, activated MMP-9 significantly increased the formation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which have the anti-platelet function in resting and collagen-stimulated platelets. Therefore, we suggest that activated MMP-9 by GB may increase the intracellular cAMP and cGMP production, inhibit the intracellular $Ca^{2+}$ mobilization and $TXA_2$ production, thereby leading to inhibition of platelet aggregation. These results strongly indicate that activated MMP-9 is a potent inhibitor of collagen-stimulated platelet aggregation. It may act a crucial role as a negative regulator during platelet activation.

Modulation of Large Conductance $Ca^{2+}-activated$ $K^+4$ Channel of Skin Fibroblast (CRL-1474) by Cyclic Nucleotides

  • Yun, Ji-Hyun;Kim, Seung-Tae;Bang, Hyo-Weon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권2호
    • /
    • pp.131-135
    • /
    • 2005
  • Potassium channels in human skin fibroblast have been studied as a possible site of Alzheimer disease pathogenesis. Fibroblasts in Alzheimer disease show alterations in signal transduction pathway such as changes in $Ca^{2+}$ homeostasis and/or $Ca^{2+}-activated$ kinases, phosphatidylinositol cascade, protein kinase C activity, cAMP levels and absence of specific $K^+$ channel. However, little is known so far about electrophysiological and pharmacological characteristics of large-conductance $Ca^{2+}$-activated $K^+$ ($BK_{Ca}$) channel in human fibroblast (CRL-1474). In the present study, we found Iberiotoxin- and TEA-sensitive outward rectifying oscillatory current with whole-cell recordings. Single channel analysis showed large conductance $K^{+}$ channels (106 pS of chord conductance at +40 mV in physiological $K^+$ gradient). The 106 pS channels were activated by membrane potential and $[Ca^{2+}]_i$, consistent with the known properties of $BK_{Ca}$ channels. $BK_{Ca}$ channels in CRL-1474 were positively regulated by adenylate cyclase activator ($10{\mu}M$ forskolin), 8-Br-cyclic AMP ($300{\mu}M$) or 8-Br-cyclic GMP ($300{\mu}M$). These results suggest that human skin fibroblasts (CR-1474) have typical $BK_{Ca}$ channel and this channel could be modulated by c-AMP and c-GMP. The electrophysiological characteristics of fibroblasts might be used as the diagnostic clues for Alzheimer disease.

Spinach Saponin-Enriched Fraction Inhibits Platelet Aggregation in cAMP- and cGMP-Dependent Manner by Decreasing TXA2 Production and Blood Coagulation

  • Cho, Hyun-Jeong;Choi, Sun-A;Kim, Chun-Gyu;Jung, Tae-Sung;Hong, Jeong-Hwa;Rhee, Man-Hee;Park, Hye-Jin;Park, Hwa-Jin
    • Biomolecules & Therapeutics
    • /
    • 제19권2호
    • /
    • pp.218-223
    • /
    • 2011
  • In this study, we investigated the effect of spinach saponin-enriched fraction (SSEF) on collagen (10 ${\mu}g/ml$)-stimulated platelet aggregation. SSEF inhibited collagen-induced platelet aggregation, and which was involved in the inhibition of thromboxane $A_2$ ($TXA_2$) production, an intracellular $Ca^{2+}$-agonist as an aggregation-inducing autacoidal molecule. In addition, SSEF significantly increased the formation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), intracellular $Ca^{2+}$-antagonists as aggregation-inhibiting molecules, in collagen-stimulated platelets. These results suggest that SSEF might inhibit $Ca^{2+}$-elevation and $TXA_2$ formation by increasing the production of $Ca^{2+}$-antagonistic molecules cAMP and cGMP. These mean that SSEF is a potent inhibitor of collagen-stimulated platelet aggregation. On the other hand, prothrombin time (PT) and activated partial thromboplastin time (APTT) were potently prolonged by SSEF. These findings suggest that SSEF prolongs the internal time between the conversion of fibrinogen to fibrin. Accordingly, our data demonstrate that SSEF may be a crucial tool for a negative regulator during platelet activation and blood coagulation on thrombotic diseases.

흰쥐 대동맥에서 phospholipase C를 경유한 melatonin의 혈관 이완 작용 (Phospholipase C-mediated vasorelaxing action of melatonin in rat isolated aorta)

  • 김상진;백성수;강형섭;김진상
    • 대한수의학회지
    • /
    • 제45권4호
    • /
    • pp.507-515
    • /
    • 2005
  • Melatonin, the principal hormone of the vertebral pineal gland, participates in the regulation of cardiovascular system in vitro and in vivo. However, the effects of melatonin on vascular tissues are still vague. The aim of this study was to assess the relationship between phospholipase C (PLC) and nitric oxide synthase (NOS)/cyclic guanosine 3',5'-monophosphate (cGMP) signaling cascade in the relaxatory action of melatonin in isolated rat aorta. Melatonin induced a concentration-dependent relaxation in phenylephrine (PE)- and KCl-precontracted endothelium intact (+E) aortic rings. In KCl-precontracted +E aortic rings, the melatonin-induced vasorelaxation was not inhibited by endothelium removal or by pretreatment with NOS inhibitors, L-$N^G$-nitor-arginine (L-NNA) and L-$N^G$-nitor-arginine methyl ester (L-NAME), guanylate cyclase (GC) inhibitors, methylene blue (MB) and 1H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one (ODQ). In PE-precontracted +E aortic rings, the melatonin-induced vasorelaxation was inhibited by endothelium removal or by pretreatment with L-NNA, L-NAME, MB, ODQ and 2-nitro-4-carboxyphenyl-n,n-diphenylcarbamate (NCDC). Moreover, in without endothelium (-E) aortic rings and in the presence of L-NNA, L-NAME, MB and ODQ in +E aortic rings, the melatonin-induced residual relaxations and residual contractile responses to PE were not affected by NCDC, a PLC inhibitor. It is concluded that melatonin can evoke vasorelaxation due to inhibition of PLC pathway through the protein kinase G activation of endothelial NOS/cGMP signaling cascade.