• Title/Summary/Keyword: cGMP

Search Result 318, Processing Time 0.023 seconds

The anti-platelet activity of panaxadiol fraction and panaxatriol fraction of Korean Red Ginseng in vitro and ex vivo

  • Yuan Yee Lee;Yein Oh;Min-Soo Seo;Min-Goo Seo;Jee Eun Han;Kyoo-Tae Kim;Jin-Kyu Park;Sung Dae Kim;Sang-Joon Park;Dongmi Kwak;Man Hee Rhee
    • Journal of Ginseng Research
    • /
    • v.47 no.5
    • /
    • pp.638-644
    • /
    • 2023
  • Background: The anti-platelet activity of the saponin fraction of Korean Red Ginseng has been widely studied. The saponin fraction consists of the panaxadiol fraction (PDF) and panaxatriol fraction (PTF); however, their anti-platelet activity is yet to be compared. Our study aimed to investigate the potency of anti-platelet activity of PDF and PTF and to elucidate how well they retain their anti-platelet activity via different administration routes. Methods: For ex vivo studies, Sprague-Dawley rats were orally administered 250 mg/kg PDF and PTF for 7 consecutive days before blood collection via cardiac puncture. Platelet aggregation was conducted after isolation of the washed platelets. For in vitro studies, washed platelets were obtained from Sprague-Dawley rats. Collagen and adenosine diphosphate (ADP) were used to induce platelet aggregation. Collagen was used as an agonist for assaying adenosine triphosphate release, thromboxane B2, serotonin, cyclic adenosine monophosphate, and cyclic guanosine monophosphate (cGMP) release. Results: When treated ex vivo, PDF not only inhibited ADP and collagen-induced platelet aggregation, but also upregulated cGMP levels and reduced platelet adhesion to fibronectin. Furthermore, it also inhibited Akt phosphorylation induced by collagen treatment. Panaxadiol fraction did not exert any antiplatelet activity in vitro, whereas PTF exhibited potent anti-platelet activity, inhibiting ADP, collagen, and thrombin-induced platelet aggregation, but significantly elevated levels of cGMP. Conclusion: Our study showed that in vitro and ex vivo PDF and PTF treatments exhibited different potency levels, indicating possible metabolic conversions of ginsenosides, which altered the content of ginsenosides capable of preventing platelet aggregation.

Anti-Thrombotic Effects of Egg Yolk Lipids In Vivo

  • Cho, Hyun-Jeong;Ju, Young-Cheol;Park, Hwa-Jin
    • Biomedical Science Letters
    • /
    • v.16 no.4
    • /
    • pp.377-380
    • /
    • 2010
  • In this study, we investigated the effect of egg yolk lipids (EYL) on collagen ($10\;{\mu}g/ml$)-stimulated platelet aggregation in vivo. Dietary EYL significantly inhibited collagen-induced platelet aggregation, in addition, increased the formation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), intracellular $Ca^{2+}$-antagonist as aggregation-inhibiting molecules, in collagen-stimulated platelets. These results suggest that EYL inhibits the collagen-induced platelet aggregation by up-regulating the cAMP and cGMP production. On the other hands, prothrombin time (PT) on extrinsic pathway of blood coagulation was potently prolonged by dietary EYL in vivo. These findings suggest that EYL prolongs the internal time between the conversion of fibrinogen to fibrin. Accordingly, our data demonstrate that EYL may be a crucial tool for a negative regulator during platelet activation and blood coagulation on thrombotic diseases.

Anti-platelet Effects of Dimethyl Sulfoxide via Down-regulation of COX-1 and $TXA_2$ Synthase Activity in Rat Platelets

  • Ro, Ju-Ye;Lee, Hui-Jin;Ryu, Jin-Hyeob;Park, Hwa-Jin;Cho, Hyun-Jeong
    • Biomedical Science Letters
    • /
    • v.20 no.2
    • /
    • pp.70-76
    • /
    • 2014
  • In this study, we investigated the effect of DMSO, a highly dipolar organic liquid, in collagen ($5{\mu}g/ml$)-stimulated platelet aggregation. DMSO inhibited platelet aggregation at 0.5% by inhibiting production of thromboxane $A_2$ ($TXA_2$) which was associated with blocking cyclooxygenase (COX)-1 activity and $TXA_2$ synthase. In addition, DMSO significantly increased the formation of cyclic adenosine monophosphate (cAMP) from adenosine triphosphate (ATP) and cyclic guanosine monophosphate (cGMP) from guanosine triphosphate (GTP). On the other hand, DMSO (0.1~0.5% concentration) did not affect the LDH release which indicates the cytotoxicity. Based on these results, DMSO has anti-platelet effect by regulation of several platelet signaling pathways, therefore we suggest that DMSO could be a novel strategy on many thrombotic disorders.

Inhibitory effects of isoscopoletin on thrombus formation via regulation of cyclic nucleotides in collagen-induced platelets

  • Lee, Dong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.3
    • /
    • pp.235-241
    • /
    • 2020
  • An essential component of the hemostatic process during vascular damage is platelet activation. However, many cardiovascular diseases, such as atherosclerosis, thrombosis, and myocardial infarction, can develop due to excessive platelet activation. Isoscopoletin, found primarily in plant roots of the genus Artemisia or Scopolia, has been studied to demonstrate potential pharmacological effects on Alzheimer's disease and anticancer, but its mechanisms and role in relation to thrombus formation and platelet aggregation have not yet been discovered. This research investigated the effect of isoscopoletin on collagen-induced human platelet activation. As a result, isoscopoletin strongly increased cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) levels in a concentration-dependent manner. In addition, isoscopoletin greatly phosphorylated inositol 1,4,5-triphosphate receptor (IP3R) and vasodilator-stimulated phosphoprotein (VASP), known substrates of cAMP-dependent kinase and cGMP dependent kinase. Phosphorylation of IP3R by isoscopoletin induced Ca2+ inhibition from the dense tubular system Ca2+ channels, and VASP phosphorylation was involved in fibrinogen binding inhibition by inactivating αIIb/β3 in the platelet membrane. Isoscopoletin finally reduced thrombin-induced fibrin clot production and finally reduced thrombus formation. Therefore, this research suggests that isoscopoletin has strong antiplatelet effects and is likely to be helpful for thrombotic diseases involving platelets by acting as a prophylactic and therapeutic agent.

Anti-thrombus Effects of Isoscopoletin by Regulating Cyclic Nucleotides on U46619-induced Platelets (U46619 유도의 혈소판에서 Cyclic Nucleotides 조절을 통한 Isoscopoletin의 혈전생성 억제효과)

  • Lee, Dong-Ha
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.1
    • /
    • pp.26-33
    • /
    • 2021
  • During blood vessel damage, an essential step in the hemostatic process is platelet activation. However, it is important to properly control platelet activation, as various cardiovascular diseases, such as stroke, atherosclerosis, and myocardial infarction, are also caused by excessive platelet activation. Found primarily in the roots of plants of the genus Artemisia or Scopolia, isoscopoletin has been studied to demonstrate its potential pharmacological effects against Alzheimer's disease and anticancer, but the mechanisms and roles involved in thrombus formation and platelet aggregation are insufficient. This study investigated the effect of isoscopoletin on U46619-induced human platelet activation. As a result, isoscopoletin significantly increased the levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) dose-dependently. In addition, isoscopoletin significantly phosphorylated inositol 1, 4, 5-triphosphate receptor (IP3R) and vasodilator-stimulated phosphprotein (VASP), which are known substrates for cAMP-dependent kinases and cGMP-dependent kinases. Phosphorylated IP3R by isoscopoletin inhibited Ca2+ mobilization from the dense tubular system Ca2+ channels to cytosol, and phosphorylated VASP was involved in the inhibition of fibrinogen binding through αIIb/β3 inactivation in the platelet membrane. Isoscopoletin finally reduced thrombin-induced fibrin clotting production. Therefore, this study suggests that isoscopoletin has a potent antiplatelet effect and may be helpful for platelet-related thrombotic diseases.

Thrombus Formation Inhibition of Esculetin through Regulation of Cyclic Nucleotides on Collagen-Induced Platelets

  • Lee, Dong-Ha
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.270-276
    • /
    • 2021
  • Physiological agents trigger a signaling process called "inside-out signaling" and activated platelets promote adhesion, granule release, and conformational changes of glycoprotein IIb/IIIa (αIIb/β3). Activated αIIb/β3 interacts with fibrinogen and initiates a second signaling step called "external signaling". These two signaling pathways can cause hemostasis or thrombosis, and thrombosis is a possible medical problem in arterial and venous vessels, and platelet-mediated thrombosis is a major cause of cardiovascular disease (CVD). Therefore, modulating platelet activity is important for platelet-mediated thrombosis and cardiovascular disease. Esculetin is a coumarin-based physiologically active 6,7-dihydroxy derivative known to have pharmacological activity against obesity, diabetes, renal failure and CVD. Although some studies have confirmed the effects of esculetin in human platelet activation and experimental mouse models, it is not clear how esculetin has antiplatelet and antithrombotic effects. We confirmed the effect and mechanism of action of escultein on human platelets induced by collagen. As a result, esculetin decreased Ca2+ recruitment through upregulation of inositol 1, 4, 5-triphosphate receptor. In addition, esculetin upregulates cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP)-dependent pathways and inhibits fibrinogen binding and thrombus contraction. Our results demonstrate the antiplatelet effect and antithrombotic effect of esculetin in human platelets. Therefore, we suggest that esculetin could be a potential phytochemical for the prevention of thrombus-mediated CVD.

Anti-platelet effects of Artesunate through Regulation of Cyclic Nucleotide on Collagen-induced Human Platelets

  • Dong-Ha Lee
    • Biomedical Science Letters
    • /
    • v.29 no.1
    • /
    • pp.41-47
    • /
    • 2023
  • Discovery of new substance that can regulate platelet aggregation or suppress aggregation will aid in the prevention and treatment of cardiovascular diseases. Artesunate is a compound from plant roots of Artemisia or Scopolia, and its effects have shown to be promising in areas of anticancer and Alzheimer's disease. However, the role and mechanisms by which artesunate affects the aggregation of platelets, and the formation of a thrombus are currently not understood. This study examined the ways artesunate affects platelets activation and thrombus formation induced by collagen. As a result, cAMP and cGMP production were increased significantly by artesunate relative to the doses, as well as phosphorylated VASP and IP3R, substrates to cAMP-dependent kinase and cGMP-dependent kinase, in a significant manner. The Ca2+ normally mobilized from the dense tubular system was inhibited due to IP3R, phosphorylation from artesunate, and phosphorylated VASP aided in inhibiting platelet activity via αIIb/β3 platelet membrane inactivation and inhibiting fibrinogen binding. Finally, artesunate inhibited thrombin-induced thrombus formation. Therefore, we suggest that artesunate has importance with cardiovascular diseases stemming from the abnormal platelets activation and thrombus formation by acting as an effective prophylactic and therapeutic agent.

Approach to Compositional Effect on Properties of Aspherical Optical Glass for GMP Process with Design of Experiments (실험계획법에 의한 GMP용 비구면 광학유리의 성질에 미치는 조성의 효과 연구)

  • Maeng, Jee-Hun;Kim, Hyeong-Jun;Jung, Ah-Reum;Kim, Jong-Cheol;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.40-45
    • /
    • 2011
  • In this study, the composition of optical glass for GMP(glass molding process) was designed with 'Design of Experiments' method. All the composition batch was performed by 'Create Factorial Design' method. Particularly, $SiO_2$, BaO and $Al_2O_3$ were chosen major parameters for investigating the effects of components on optical and thermal properties. BaO and $Al_2O_3$ strongly influenced on optical and thermal properties, respectively. Finally, the approximate values of desired optical and thermal values were obtained by microtuning of compositions. At the composition of $BaO:Al_2O_3:SiO_2$=10:4:48 (molar ratio), refractive index($n_d$) was 1.5833, coefficient of thermal expansion(CTE) was $104{\times}10^{-7}/^{\circ}C$.

Ginsenoside Re Enriched Fraction (GS-F3K1) from Ginseng Berries Ameliorates Ethanol-Induced Erectile Dysfunction via Nitric Oxide-cGMP Pathway

  • Pyo, Mi Kyung;Park, Kwang-Hyun;Oh, Myeong Hwan;Lee, Hwan;Park, Young Sik;Kim, Na Young;Park, So Hee;Song, Ji Hye;Park, Jong Dae;Jung, Se-Hee;Lee, Bong-Gun;Won, Beom Young;Shin, Ki Young;Lee, Hyung Gun
    • Natural Product Sciences
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2016
  • Erectile dysfunction (ED) is a highly prevalent disorder that affects millions of men and considered to be an early symptom of atherosclerosis and a precursor of various systemic vascular disorders. The aim of the present study was to prepare ginsenoside Re enriched fraction (GS-F3K1, ginsenoside Re 10%, w/w) from ginseng berries flesh and to investigate the enhanced activities of GS-F3K1 on alcohol-induced ED. GS-F3K1 was prepared by the continuous liquid and solid separating centrifugation and circulatory ultrafiltration from ginseng berries flesh. GS-F3K1 was administered for 5 weeks in ethanol-induced ED rat by oral administration of 20% ethanol. To investigate the effects of GS-F3K1 on ED model, the levels of nitrite expression, cyclic guanosine monophosphate (cGMP) and erectile response of the penile corpus cavernosum of rat were measured. The erectile response of the corpus cavernosum was restored after GS-F3K1 administration, to a level similar to the normal group. The level of nitrite and cGMP expression in the corpus cavernosum of GS-F3K1-administered male rats was increased significantly compared to positive control group. GS-F3K1 from ginseng berries should effectively restore ethanol-induced ED in male rats and could be developed as a new functional food for the elderly men.

The Origin of Ribityl Side Chain of Riboflavin in Ashbya gossypii (Ashbua gossypii에서의 리보플라빈 측쇄의 기원)

  • 최원자;임정빈
    • Korean Journal of Microbiology
    • /
    • v.23 no.3
    • /
    • pp.167-171
    • /
    • 1985
  • In order to investigate the origin of the ribityl froup of riboflavin and the involvement of GTP cyclohydrolase II in the riboflavin pathway, we studied the incorporation of $^{14}C-labeled$ guanosine using a well known riboflavin over producer, Ashbya gossypii.Cells were grown in a media containing $(U- ^{14}C)$ guanosine and the riboflavin and GMP were isolated and purifired by column chromatography. The isolated compounds, riboflavin and GMP were labeled in the ribityl and ribosyl side chain and the isoalloxazine and guannine moiety. By comparing the specific radioactivity of each compound we reached a conclusion that the ribose of guanosine is converted directly to the rivityl moiety of riboflavin. The results indicate that biosynthesis of the vitamin begins at the level of a guanosine compound and also suppory the involvement of GTP cyclohydrolase II in one of the early steps in the biosynthetic pathway.

  • PDF