• 제목/요약/키워드: cDNA Microarray Analysis

검색결과 227건 처리시간 0.02초

cDNA Microarray Analysis of Transcriptional Response to Hyperin in Human Gastric Cancer Cells

  • Jeoung, Dooil;Kim, Jae-Hwan;Lee, Youn-Hyung;Myungin Baek;Lee, Seongeun;Baek, Nam-In;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권4호
    • /
    • pp.664-668
    • /
    • 2002
  • Antioxidants either scavenge superoxide and free radicals or stimulate the detoxification mechanisms within cells, resulting in increased detoxification of free radicals formation. Hyperin, isolated from the stem of Uncaria rhynchophylla, prevented oxygen radical formation and inhibited lipid oxidation. The effective concentrations were 31.3 $\mu$M for a radical scavenging assay and 2.2 $\mu$M for a microsome assay. cDNA microarray analysis to determine which genes were modulated by hyperin found that 50 genes were upregulated and 37 genes were downregulated in SNU-668 human gastric cancer cells. Among these genes, thirteen genes that were significantly affected by hyperin were verified by RT-PCR for their effect of genetic reprogramming.

Overexpression of cysteine protease in transgenic Brassica rapa enhances resistance to bacterial soft rot and up-regulate the expression of various stress-regulated genes

  • Jung, Yu-Jin;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • 제37권3호
    • /
    • pp.327-336
    • /
    • 2010
  • Cysteine proteases have been known as a critical factor in plant defense mechanisms in pineapple, papaya, or wild fig. Papain or ficin is one kind of cysteine proteases that shows toxic effects to herbivorous insects and pathogenic bacteria. However, resistance to bacterial soft rot of plants genetically engineered with cysteine protease has been little examined thus far. We cloned a cysteine protease cDNA from Ananas comosus and introduced the gene into Chinese cabbage (Brassica rapa) under the control of the cauliflower mosaic virus 35S promoter. The transgene was stably integrated and actively transcribed in transgenic plants. In comparisons with wild-type plants, the $T_2$ and $T_3$ transgenic plants exhibited a significant increase in endo-protease activity in leaves and enhanced resistance to bacterial soft rot. A cDNA microarray analysis revealed that several genes were more abundantly transcribed in the transgenic than in the wild type. These genes encode a glyoxal oxidase, PR-1 protein, PDF1, protein kinase, LTP protein, UBA protein and protease inhibitor. These results suggest an important role for cysteine protease as a signaling regulator in biotic stress signaling pathways, leading to the build-up of defense mechanism to pathogenic bacteria in plants.

주성분 분석 방법을 이용한 유방암의 임상적 특징과 관련된 유전자 분석 (Molecular Profiling of Clinical Features in Breast Cancer Using Principal Component Analysis)

  • Han, Mi-Ryung;Lee, Seok-Ho;Han, Won-Shik;Kim, Mi-Hyeon;Noh, Dong-Young;Kim, Ju-Han
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2004년도 The 3rd Annual Conference for The Korean Society for Bioinformatics Association of Asian Societies for Bioinformatics 2004 Symposium
    • /
    • pp.29-35
    • /
    • 2004
  • 유방암 환자의 임상정보(clinical features)와 cDNA microarray 기술을 이용하여 얻은 유전자 발현 프로파일은 유방암 예후 인자를 찾는 데에 매우 중요하다. 본 논문에서는 임상정보와 유전자 발현 정보를 접목해서 분석하는 방법으로써 주성분 분석(Principal Component Analysis)을 이용하였다. 이 방법은 다변량 자료의 차원을 줄이는 방법으로써, 대용량 실험 데이터로 인해 발생하는 문제점을 해결하기 위하여 많이 쓰이고 있다. 본 연구에서는 주성분 분석을 이용하여 먼저 한국인 유방암 환자 73명의 cDNA microarray 데이터 차원을 줄이고, 이를 통해 얻어진 주성분(Principal Components)과 임상정보 데이터와의 상관관계를 보았다. One-way ANOVA를 이용한 상관관계 분석 결과의 P-value는 permutation test를 통해 검증하였다. 동일한 방법을 estrogen receptor(ER)(+) 환자 20명과 ER(-) 환자 31명에 적용해본 결과, ER(-) 환자 중에서 재발과 관련된 유전자를 찾을 수 있었다. 주성분 분석을 molecular phenotypic profiles of clinical features에 이용한 결과 발견된 유전자는 유방암의 재발과 관련된 예후 인자로서 의미가 있다.

  • PDF

Differentially expressed genes in Penaeus monodon hemocytes following infection with yellow head virus

  • Pongsomboon, Siriporn;Tang, Sureerat;Boonda, Suleeporn;Aoki, Takashi;Hirono, Ikuo;Yasuike, Motoshige;Tassanakajon, Anchalee
    • BMB Reports
    • /
    • 제41권9호
    • /
    • pp.670-677
    • /
    • 2008
  • A cDNA microarray composed of 2,028 different ESTs from two shrimp species, Penaeus monodon and Masupenaeus japonicus, was employed to identify yellow head virus (YHV)-responsive genes in hemocytes of P. monodon. A total of 105 differentially expressed genes were identified and grouped into five different clusters according to their expression patterns. One of these clusters, which comprised five genes including cathepsin L-like cysteine peptidase, hypothetical proteins and unknown genes, was of particular interest because the transcripts increased rapidly ($\leq$ 0.25 hours) and reached high expression levels in response to YHV injection. Microarray data were validated by realtime RT-PCR analyses of selected differentially expressed transcripts. In addition, comparative analysis of the hemocyte transcription levels of three of these genes between surviving and non-surviving shrimp revealed significantly higher expression levels in surviving shrimp.

Altered Gene Expression in Cerulein-Stimulated Pancreatic Acinar Cells: Pathologic Mechanism of Acute Pancreatitis

  • Yu, Ji-Hoon;Lim, Joo-Weon;Kim, Hye-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권6호
    • /
    • pp.409-416
    • /
    • 2009
  • Acute pancreatitis is a multifactorial disease associated with the premature activation of digestive enzymes. The genes expressed in pancreatic acinar cells determine the severity of the disease. The present study determined the differentially expressed genes in pancreatic acinar cells treated with cerulein as an in vitro model of acute pancreatitis. Pancreatic acinar AR42J cells were stimulated with $10^{-8}$ M cerulein for 4 h, and genes with altered expression were identified using a cDNA microarray for 4,000 rat genes and validated by real-time PCR. These genes showed a 2.5-fold or higher increase with cerulein: lithostatin, guanylate cyclase, myosin light chain kinase 2, cathepsin C, progestin-induced protein, and pancreatic trypsin 2. Stathin 1 and ribosomal protein S13 showed a 2.5-fold or higher decreases in expression. Real-time PCR analysis showed time-dependent alterations of these genes. Using commercially available antibodies specific for guanylate cyclase, myosin light chain kinase 2, and cathepsin C, a time-dependent increase in these proteins were observed by Western blotting. Thus, disturbances in proliferation, differentiation, cytoskeleton arrangement, enzyme activity, and secretion may be underlying mechanisms of acute pancreatitis.

cDNA Microarray Analysis of the Differential Gene Expression in the Neuropathic Pain and Electroacupuncture Treatment Models

  • Ko, Je-Sang;Na, Doe-Sun;Lee, Young-Han;Shin, Soon-Young;Kim, Ji-Hoon;Hwang, Byung-Gil;Min, Byung-Il;Park, Dong-Suk
    • BMB Reports
    • /
    • 제35권4호
    • /
    • pp.420-427
    • /
    • 2002
  • Partial nerve injury is the main cause of neuropathic pain disorders in humans. Acupuncture has long been used to relieve pain. It is known to relieve pain by controlling the activities of the autonomic nervous system. Although the mechanism of neuropathic pain and analgesic effects of electroacupuncture (EA) have been studied in a rat model system, its detailed mechanism at the molecular level remains unclear. To identify genes that might serve as either markers or explain these distinct biological functions, a cDNA microarray analysis was used to compare the expression of 8,400 genes among three sample groups. Messenger RNAs that were pooled from the spinal nerves of 7 normal. 7 neuropathic pain, and 7 EA treatment rat models were compared. Sixty-eight genes were differentially expressed more than 2-fold in the neuropathic rat model when compared to the normal, and restored to the normal expression level after the EA treatment. These genes are involved in a number of biological processes, including the signal transduction, gene expression, and nociceptive pathways. Confirmation of the differential gene expression was performed by a dot-blot analysis. Dot-blotting results showed that the opioid receptor sigma was among those genes. This indicates that opioid-signaling events are involved in neuropathic pain and the analgesic effects of EA. The potential application of these data include the identification and characterization of signaling pathways that are involved in the EA treatment, studies on the role of the opioid receptor in neuropathic pain, and further exploration on the role of selected identified genes in animal models.

Mechanisms of 5-azacytidine-induced damage and repair process in the fetal brain

  • Ueno, Masaki
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2006년도 추계학술대회
    • /
    • pp.55-64
    • /
    • 2006
  • The fetal central nervous system (CNS) is sensitive to diverse environmental factors, such as alcohol, heavy metals, irradiation, mycotoxins, neurotransmitters, and DNA damage, because a large number of processes occur during an extended period of development. Fetal neural damage is an important issue affecting the completion of normal CNS development. As many concepts about the brain development have been recently revealed, it is necessary to compare the mechanism of developmental abnormalities induced by extrinsic factors with the normal brain development. To clarify the mechanism of fetal CNS damage, we used one experimental model in which 5-azacytidine (5AZC), a DNA damaging and demethylating agent, was injected to the dams of rodents to damage the fetal brain. 5AzC induced cell death (apoptosis)and cell cycle arrest in the fetal brain, and it lead to microencephaly in the neonatal brain. We investigated the mechanism of apoptosis and cell cycle arrest in the neural progenitor cells in detail, and demonstrated that various cell cycle regulators were changed in response to DNA damage. p53, the guardian of genome, played a main role in these processes. Further, using DNA microarray analysis, tile signal cascades of cell cycle regulation were clearly shown. Our results indicate that neural progenitor cells have the potential to repair the DNA damages via cell cyclearrest and to exclude highly affected cells through the apoptotic process. If the stimulus and subsequent DNA damage are high, brain development proceeds abnormally and results in malformation in the neonatal brain. Although the mechanisms of fetal brain injury and features of brain malformation afterbirth have been well studied, the process between those stages is largely unknown. We hypothesized that the fetal CNS has the ability to repair itself post-injuring, and investigated the repair process after 5AZC-induced damage. Wefound that the damages were repaired by 60 h after the treatment and developmental processes continued. During the repair process, amoeboid microglial cells infiltrated in the brain tissue, some of which ingested apoptotic cells. The expressions of genes categorized to glial cells, inflammation, extracellular matrix, glycolysis, and neurogenesis were upregulated in the DNA microarray analysis. We show here that the developing brain has a capacity to repair the damage induced by the extrinsic stresses, including changing the expression of numerous genes and the induction of microglia to aid the repair process.

  • PDF

Eco-toxicogenomics Research with Fish

  • Park, Kyeong-Seo;Kim, Han-Na;Gu, Man-Bock
    • Molecular & Cellular Toxicology
    • /
    • 제1권1호
    • /
    • pp.17-25
    • /
    • 2005
  • There are some critical drawbacks in the use of biomarkers for a global assessment of the toxicological impacts many chemicals and environmental pollutants have, primarily due to an individual biomarker's specificity for an explicit chemical or toxicant. In other words, the biomarker-based assessment methodology used to analyze toxicological effects lacks a high-throughput capability. Therefore, eco-toxicogenomics, or the study of toxicogenomics with organisms present within a given environmental locale, has recently been introduced with the advent of the so-called "-omics" era, which began with the creation of microarray technologies. Fish are comparable with humans in their toxicological responses and thus data from toxicogenomic studies performed with fish could be applied, with appropriate tools and implementation protocols, to the evaluation of environments where human or animal health is of concern. At present, there have been very active research streams for developing expression sequence tag (EST) databases (DBs) for zebra fish and rainbow trout. Even though few reports involve toxicogenomic studies with fish, a few groups have successfully fabricated and used cDNA microarrays or oligo DNA chips when studying the toxicological impacts of hypoxia or some toxicants with fish. Furthermore, it is strongly believed that this technology can also be implemented with non-model fish. With the standardization of DNA microarray technologies and ample progress in bioinformatics and proteomic technologies, data obtained from DNA microarray technologies offer not only multiple biomarker assays or an analysis of gene expression profiles, but also a means of elucidating gene networking, gene-gene relations, chemical-gene interactions, and chemical-chemical relationships. Accordingly, the ultimate target of eco-toxicogenomics should be to predict and map the pathways of stress propagation within an organism and to analyze stress networking.

Effects of polysaccharides derived from Orostachys japonicus on induction of cell cycle arrest and apoptotic cell death in human colon cancer cells

  • Ryu, Deok-Seon;Baek, Geum-Ok;Kim, Eun-Young;Kim, Ki-Hoon;Lee, Dong-Seok
    • BMB Reports
    • /
    • 제43권11호
    • /
    • pp.750-755
    • /
    • 2010
  • Crude Orostachys japonicus polysaccharide extract (OJP) was prepared by hot steam extraction. Polysaccharides (OJPI) were separated from OJP by gel filtration chromatography and phenol-sulfuric acid assay. The average molecular weight of the OJPI was 30-50 kDa. The anti-proliferative effect of OJPI on HT-29 human colon cancer cells was investigated via morphology study, cell viability assay, apoptosis assay, cell cycle analysis, and cDNA microarray. OJPI inhibited proliferation and growth of HT29 cells and also stimulated apoptosis in a dose- and time-dependent manner. In cell cycle analysis, treatment with OJPI resulted in a marked increase of cells in the G0 (sub G1) and G2/M phases. To screen for genes involved in the induction of cell cycle arrest and apoptosis, the gene expression profiles of HT-29 cells treated with OJPI were examined by cDNA microarray, revealing that a number of genes were up- or down-regulated by OJPI. Whereas several genes involved in anti-apoptosis, cell proliferation and growth, and cell cycle regulation were down-regulated, expression levels of several genes involved in apoptosis, tumor suppression, and other signal transduction events were up-regulated. These results suggest that OJPI inhibits the growth of HT-29 human colon cancer cells by various apoptosis-aiding activities as well as apoptosis itself. Therefore, OJPI deserve further development as an effective agent exhibiting anticancer activity.

Statistical Method for Implementing the Experimenter Effect in the Analysis of Gene Expression Data

  • Kim, In-Young;Rha, Sun-Young;Kim, Byung-Soo
    • Communications for Statistical Applications and Methods
    • /
    • 제13권3호
    • /
    • pp.701-718
    • /
    • 2006
  • In cancer microarray experiments, the experimenter or patient which is nested in each experimenter often shows quite heterogeneous error variability, which should be estimated for identifying a source of variation. Our study describes a Bayesian method which utilizes clinical information for identifying a set of DE genes for the class of subtypes as well as assesses and examines the experimenter effect and patient effect which is nested in each experimenter as a source of variation. We propose a Bayesian multilevel mixed effect model based on analysis of covariance (ANACOVA). The Bayesian multilevel mixed effect model is a combination of the multilevel mixed effect model and the Bayesian hierarchical model, which provides a flexible way of defining a suitable correlation structure among genes.