• 제목/요약/키워드: cAMP response element binding

검색결과 88건 처리시간 0.01초

사이프러스 에센셜 오일의 흡입이 전임상 실험동물의 손상된 학습능력과 기억력에 미치는 영향 (Cypress Essential Oil Improves Scopolamine-induced Learning and Memory Deficit in C57BL/6 mice)

  • 이길용;이찬;백정인;배근영;박찬익;장정희
    • 대한본초학회지
    • /
    • 제35권5호
    • /
    • pp.33-39
    • /
    • 2020
  • Objectives : Increasing evidence supports the biological and pharmacological activities of essential oils on the central nervous system such as pain, anxiety, attention, arousal, relaxation, sedation and learning and memory. The purpose of present work is to investigate the protective effect and molecular mechanism of cypress essential oil (CEO) against scopolamine (SCO)-induced cognitive impairments in C57BL/6 mice. Methods : A series of behavior tests such as Morris water maze, passive avoidance, and fear conditioning tests were conducted to monitor learning and memory functions. Immunoblotting and RT-PCR were also performed in the hippocampal tissue to determine the underlying mechanism of CEO. Results : SCO induced cognitive impairments as assessed by decreased step-through latency in passive avoidance test, relatively low freezing time in fear conditioning test, and increased time spent to find the hidden platform in Morris water maze test. Conversely, CEO inhalation significantly reversed the SCO-induced cognitive impairments in C57BL/6 mice comparable to control levels. To elucidate the molecular mechanisms of memory enhancing effect of CEO we have examined the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus. CEO effectively elevated the protein as well as mRNA expression of BDNF via activation of cAMP response element binding protein (CREB). Conclusions : Our findings suggest that CEO inhalation effectively restored the SCO-impaired cognitive functions in C56BL/6 mice. This learning and memory enhancing effect of CEO was partly mediated by up-regulation of BDNF via activation of CREB.

Effect of Beta-Asarone on Impairment of Spatial Working Memory and Apoptosis in the Hippocampus of Rats Exposed to Chronic Corticosterone Administration

  • Lee, Bombi;Sur, Bongjun;Cho, Seong-Guk;Yeom, Mijung;Shim, Insop;Lee, Hyejung;Hahm, Dae-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제23권6호
    • /
    • pp.571-581
    • /
    • 2015
  • ${\beta}$-asarone (BAS) is an active component of Acori graminei rhizoma, a traditional medicine used clinically in treating dementia and chronic stress in Korea. However, the cognitive effects of BAS and its mechanism of action have remained elusive. The purpose of this study was to examine whether BAS improved spatial cognitive impairment induced in rats following chronic corticosterone (CORT) administration. CORT administration (40 mg/kg, i.p., 21 days) resulted in cognitive impairment in the avoidance conditioning test (AAT) and the Morris water maze (MWM) test that was reversed by BAS (200 mg/kg, i.p). Additionally, as assessed by immunohistochemistry and RT-PCR analysis, the administration of BAS significantly alleviated memory-associated decreases in the expression levels of brain-derived neurotrophic factor (BDNF) and cAMP-response element-binding protein (CREB) proteins and mRNAs in the hippocampus. Also, BAS administration significantly restored the expression of Bax and Bcl-2 mRNAs in the hippocampus. Thus, BAS may be an effective therapeutic for learning and memory disturbances, and its neuroprotective effect was mediated, in part, by normalizing the CORT response, resulting in regulation of BDNF and CREB functions and anti-apoptosis in rats.

Predominant $D_1$ Receptors Involvement in the Over-expression of CART Peptides after Repeated Cocaine Administration

  • Hu, Zhenzhen;Oh, Eun-Hye;Chung, Yeon Bok;Hong, Jin Tae;Oh, Ki-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권2호
    • /
    • pp.89-97
    • /
    • 2015
  • The aim of this study was to investigate the involvement of dopaminergic receptors (DR) in behavioral sensitization, as measured by locomotor activity, and the over-expression of cocaine- and amphetamine-regulated transcript (CART) peptides after repeated administration of cocaine in mice. Repeated administrations of cocaine induced behavioral sensitization and CART over-expression in mice. The levels of striatal CART mRNA were significantly increased on the $3^{rd}$ day. CART peptides were over-expressed on the $5^{th}$ day in the striata of behaviorally sensitized mice. A higher proportion of $CART^+$ cells in the cocaine-treated mice were present in the nucleus accumbens (NAc) shell than in the dorsolateral (DL) part of caudate putamen (CP). The concomitant administration of both $D_1R$ and $D_2R$ antagonists, SCH 23390 ($D_1R$ selective) and raclopride ($D_2R$ selective), blocked cocaine induced-behavioral sensitization, CART over-expression, and cyclic adenosine 5'-monophosphate (cAMP)/ protein kinase A (PKA)/phospho-cAMP response element-binding protein (pCREB) signal pathways. SCH 23390 more predominantly inhibited the locomotor activity, CART over-expression, pCREB and PKA activity than raclopride. Cocaine induced-behavioral sensitization was also attenuated in the both $D_1R$ and $D_2R$ knockout (KO) mice, respectively. CART over-expression and activated cAMP/PKA/pCREB signal pathways were inhibited in the $D_1R$-KO mice, but not in the $D_2R$-KO mice. It is suggested that behavioral sensitization, CART over-expression and activated cAMP/PKA/pCREB signal pathways induced by repeated administration of cocaine could be more predominantly mediated by $D_1R$.

PKA-Mediated Regulation of B/K Gene Transcription in PC12 Cells

  • Choi, Mi-Hyun;Kim, Ho-Shik;Choi, Sung-Ho;Kim, Mi-Young;Jang, Yoon-Seong;Jang, Young-Min;Lee, Jeong-Hwa;Jeong, Seong-Whan;Kim, In-Kyung;Kwon, Oh-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권6호
    • /
    • pp.333-339
    • /
    • 2005
  • B/K protein is a novel protein containing double C2-like domains. We examined the specific signaling pathway that regulates the transcription of B/K in PC12 cells. When the cells were treated with forskolin ($50{\mu}M$), B/K mRNA and protein levels were time-dependently decreased, reaching the lowest level at 3 or 4 hr, and thereafter returning to the control level. Chemicals such as dibutyryl-cAMP, cellpermeable cyclic AMP (cAMP) analogue and CGS21680, adenosine receptor $A_{2A}$ agonist, also repressed the B/K transcription. However, 1,9-dideoxyforskolin did not show inhibitory effect on B/K transcription, suggesting direct involvement of cAMP in the forskolin-induced inhibition of B/K transcription. Effect of forskolin, dibutyryl cAMP and CGS21680 was significantly reduced in PKA-deficient PC12 cell line (PC12-123.7). One cAMP-response element (CRE)-like sequence (B/K CLS) was found in the promoter region of B/K DNA, and electrophoretic mobility shift assay indicated its binding to CREM and CREB. Forskolin significantly suppressed the promoter activity in CHO-K1 cells transfected with the constructs containing B/K CLS, but not with the construct in which B/K CLS was mutated (AC:TG). Taken together, we suggest that the transcription of B/K gene in PC12 cells may be regulated by PKA-dependent mechanism.

The Memory-Enhancing Effects of Liquiritigenin by Activation of NMDA Receptors and the CREB Signaling Pathway in Mice

  • Ko, Yong-Hyun;Kwon, Seung-Hwan;Hwang, Ji-Young;Kim, Kyung-In;Seo, Jee-Yeon;Nguyen, Thi-Lien;Lee, Seok-Yong;Kim, Hyoung-Chun;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • 제26권2호
    • /
    • pp.109-114
    • /
    • 2018
  • Liquiritigenin (LQ) is a flavonoid that can be isolated from Glycyrrhiza radix. It is frequently used as a tranditional oriental medicine herbal treatment for swelling and injury and for detoxification. However, the effects of LQ on cognitive function have not been fully explored. In this study, we evaluated the memory-enhancing effects of LQ and the underlying mechanisms with a focus on the N-methyl-D-aspartic acid receptor (NMDAR) in mice. Learning and memory ability were evaluated with the Y-maze and passive avoidance tests following administration of LQ. In addition, the expression of NMDAR subunits 1, 2A, and 2B; postsynaptic density-95 (PSD-95); phosphorylation of $Ca^{2+}$/calmodulin-dependent protein kinase II (CaMKII); phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2); and phosphorylation of cAMP response element binding (CREB) proteins were examined by Western blot. In vivo, we found that treatment with LQ significantly improved memory performance in both behavioral tests. In vitro, LQ significantly increased NMDARs in the hippocampus. Furthermore, LQ significantly increased PSD-95 expression as well as CaMKII, ERK, and CREB phosphorylation in the hippocampus. Taken together, our results suggest that LQ has cognition enhancing activities and that these effects are mediated, in part, by activation of the NMDAR and CREB signaling pathways.

Exploring amygdala structural changes and signaling pathways in postmortem brains: consequences of long-term methamphetamine addiction

  • Zahra Azimzadeh;Samareh Omidvari;Somayeh Niknazar;Saeed Vafaei-Nezhad;Navid Ahmady Roozbahany;Mohammad-Amin Abdollahifar;Foozhan Tahmasebinia;Gholam-Reza Mahmoudiasl;Hojjat Allah Abbaszadeh;Shahram Darabi
    • Anatomy and Cell Biology
    • /
    • 제57권1호
    • /
    • pp.70-84
    • /
    • 2024
  • Methamphetamine (METH) can potentially disrupt neurotransmitters activities in the central nervous system (CNS) and cause neurotoxicity through various pathways. These pathways include increased production of reactive nitrogen and oxygen species, hypothermia, and induction of mitochondrial apoptosis. In this study, we investigated the long-term effects of METH addiction on the structural changes in the amygdala of postmortem human brains and the involvement of the brain- cAMP response element-binding protein/brain-derived neurotrophic factor (CREB/BDNF) and Akt-1/GSK3 signaling pathways. We examined ten male postmortem brains, comparing control subjects with chronic METH users, using immunohistochemistry, real-time polymerase chain reaction (to measure levels of CREB, BDNF, Akt-1, GSK3, and tumor necrosis factor-α [TNF-α]), Tunnel assay, stereology, and assays for reactive oxygen species (ROS), glutathione disulfide (GSSG), and glutathione peroxidase (GPX). The findings revealed that METH significantly reduced the expression of BDNF, CREB, Akt-1, and GPX while increasing the levels of GSSG, ROS, RIPK3, GSK3, and TNF-α. Furthermore, METH-induced inflammation and neurodegeneration in the amygdala, with ROS production mediated by the CREB/BDNF and Akt-1/GSK3 signaling pathways.

Genistein attenuates isoflurane-induced neurotoxicity and improves impaired spatial learning and memory by regulating cAMP/CREB and BDNF-TrkB-PI3K/Akt signaling

  • Jiang, Tao;Wang, Xiu-qin;Ding, Chuan;Du, Xue-lian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권6호
    • /
    • pp.579-589
    • /
    • 2017
  • Anesthetics are used extensively in surgeries and related procedures to prevent pain. However, there is some concern regarding neuronal degeneration and cognitive deficits arising from regular anesthetic exposure. Recent studies have indicated that brain-derived neurotrophic factor (BDNF) and cyclic AMP response element-binding protein (CREB) are involved in learning and memory processes. Genistein, a plant-derived isoflavone, has been shown to exhibit neuroprotective effects. The present study was performed to examine the protective effect of genistein against isoflurane-induced neurotoxicity in rats. Neonatal rats were exposed to isoflurane (0.75%, 6 hours) on postnatal day 7 (P7). Separate groups of rat pups were orally administered genistein at doses of 20, 40, or 80 mg/kg body weight from P3 to P15 and then exposed to isoflurane anesthesia on P7. Neuronal apoptosis was detected by TUNEL assay and FluoroJade B staining following isoflurane exposure. Genistein significantly reduced apoptosis in the hippocampus, reduced the expression of proapoptotic factors (Bad, Bax, and cleaved caspase-3), and increased the expression of Bcl-2 and Bcl-xL. RT-PCR analysis revealed enhanced BDNF and TrkB mRNA levels. Genistein effectively upregulated cAMP levels and phosphorylation of CREB and TrkB, leading to activation of cAMP/CREB-BDNF-TrkB signaling. PI3K/Akt signaling was also significantly activated. Genistein administration improved general behavior and enhanced learning and memory in the rats. These observations suggest that genistein exerts neuroprotective effects by suppressing isoflurane-induced neuronal apoptosis and by activating cAMP/CREB-BDNF-TrkB-PI3/Akt signaling.

닭 인터페론 유전자의 클로닝에 관한 연구 (MOLECULAR CLONING OF CHICKEN INTERFERON-GAMMA)

  • 송기덕;;한재용
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 1999년도 제16차 정기총회및학술발표회
    • /
    • pp.34-50
    • /
    • 1999
  • A cDNA encoding chicken interferon-gamma (chIFN-${\gamma}$) was amplified from P34, a CD4$^{+}$ T-cell hybridoma by reverse transcription-polymerase chain reaction (RT-PCR) and cloned into pUC18. THe sequences of cloned PCR products were determined to confirm the correct cloning. Using this cDNA as probe, chicken genomic library from White Leghorn spleen was screened. Phage clones harboring chicken interferon-gamma (chIFN-${\gamma}$) were isolated and their genomic structure elucidated. The chIFN-${\gamma}$ contains 4 exons and 3 introns spanning over 14 kb, and follows the GT/AG rule for correct splicing at the exon/intron boundaries. The four exons encode 41, 26, 57 and 40 amino acids, respectively, suggesting that the overall structure of IFN-${\gamma}$ is evolutionairly conserved in mammalian and avian species. The 5’-untranslated region and signal sequences are located in exon 1. Several AT-rich sequences located in the fourth exon may indicate a role in mRNA turnover. The 5’-flanking region contains sequences homologous to the potential binding sites for the mammalian transcription factors, activator protein-1(AP-1) activator protein-2(AP-2) cAMP-response element binding protein(CREB), activating transcription factor(ATF), GATA-binding fator(GATA), upstream stimulating factor(USF), This suggests that the mechanisms underlying transcriptional regulation of chicken and mammalian IFN-${\gamma}$ genes may be similar.r.

  • PDF