• Title/Summary/Keyword: cAMP Responsive Element Binding Protein (CREB)

Search Result 10, Processing Time 0.027 seconds

The Pleiotropic Face of CREB Family Transcription Factors

  • Md. Arifur Rahman Chowdhury;Jungeun An;Sangyun Jeong
    • Molecules and Cells
    • /
    • v.46 no.7
    • /
    • pp.399-413
    • /
    • 2023
  • cAMP responsive element-binding protein (CREB) is one of the most intensively studied phosphorylation-dependent transcription factors that provide evolutionarily conserved mechanisms of differential gene expression in vertebrates and invertebrates. Many cellular protein kinases that function downstream of distinct cell surface receptors are responsible for the activation of CREB. Upon functional dimerization of the activated CREB to cis-acting cAMP responsive elements within the promoters of target genes, it facilitates signal-dependent gene expression. From the discovery of CREB, which is ubiquitously expressed, it has been proven to be involved in a variety of cellular processes that include cell proliferation, adaptation, survival, differentiation, and physiology, through the control of target gene expression. In this review, we highlight the essential roles of CREB proteins in the nervous system, the immune system, cancer development, hepatic physiology, and cardiovascular function and further discuss a wide range of CREB-associated diseases and molecular mechanisms underlying the pathogenesis of these diseases.

Promotion of cAMP Responsive Element-Binding Protein Activity Ameliorates Radiation-Induced Suppression of Hippocampal Neurogenesis in Adult Mice

  • Kim, Joong-Sun;Yang, Mi-Young;Cho, Jae-Ho;Kim, Sung-Ho;Kim, Jong-Choon;Shin, Tae-Kyun;Moon, Chang-Jong
    • Toxicological Research
    • /
    • v.26 no.3
    • /
    • pp.177-183
    • /
    • 2010
  • This study was performed to examine whether elevated activity of cAMP responsive element-binding protein (CREB) attenuates the detrimental effects of acute gamma ($\gamma$)-irradiation on hippocampal neurogenesis and related functions. C57BL/6 male mice were treated with rolipram (1.25 mg/kg, i.p., twice a day for 5 consecutive days) to activate the cAMP/CREB pathway against cranial irradiation (2 Gy), and were euthanized at 24 h post-irradiation. Exposure to $\gamma$-rays decreased both CREB phosphorylation and immunohistochemical markers for neurogenesis, including Ki-67 and doublecortin (DCX), in the hippocampal dentate gyrus (DG). However, the rolipram treatment protected from $\gamma$-irradiation-induced decreases of CREB phosphorylation, and Ki-67 and DCX immunoreactivity in the hippocampal DG. In an object recognition memory test, mice trained 24 h after acute $\gamma$-irradiation (2 Gy) showed significant memory impairment, which was attenuated by rolipram treatment. The results suggest that activation of CREB signaling ameliorates the detrimental effects of acute $\gamma$-irradiation on hippocampal neurogenesis and related functions in adult mice.

Krill-Derived Phosphatidylserine Improves TMT-Induced Memory Impairment in the Rat

  • Shim, Hyun-Soo;Park, Hyun-Jung;Ahn, Yong-Ho;Her, Song;Han, Jeong-Jun;Hahm, Dae-Hyun;Lee, Hye-Jung;Shim, In-Sop
    • Biomolecules & Therapeutics
    • /
    • v.20 no.2
    • /
    • pp.207-213
    • /
    • 2012
  • The present study examined the effects of krill-derived phosphatidylserine (Krill-PS) on the learning and memory function and the neural activity in rats with trimethyltin (TMT)-induced memory deficits. The rats were administered vehicle (medium-chain triglyceride: MCT) or Krill-PS (50, 100 mg/kg, p.o.) daily for 21 days. The cognitive improving efficacy of Krill-PS in TMT-induced amnesic rats was investigated by assessing the Morris water maze test and by performing choline acetyltransferase (ChAT), acetylcholinesterase (AChE) and cAMP responsive element binding protein (CREB) immunohistochemistry. The rats with TMT injection showed impaired learning and memory of the tasks and treatment with Krill-PS produced a significant improvement of the escape latency to find the platform in the Morris water maze at the $2^{nd}$ and $4^{th}$ day compared to that of the MCT group (p<0.05). In the retention test, the Krill-PS+MCT groups showed increased time spent around the platform compared to that of the MCT group. Consistent with the behavioral data, Krill-PS 50+MCT group significantly alleviated the loss of acetylcholinergic neurons in the hippocampus and medial septum compared to that of the MCT group. Treatment with Krill-PS significantly increased the CREB positive neurons in the hippocampal CA1 area as compared to that of the MCT group. These results suggest that Krill-PS may be useful for improving the cognitive function via regulation of cholinergic marker enzyme activity and neural activity.

The PKA/CREB Pathway Is Closely Involved in VEGF Expression in Mouse Macrophages

  • Jeon, Seong-Hyun;Chae, Byung-Chul;Kim, Hyun-A;Seo, Goo-Young;Seo, Dong-Wan;Chun, Gie-Taek;Yie, Se-Won;Eom, Seok-Hyun;Kim, Pyeung-Hyeun
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.23-29
    • /
    • 2007
  • Cyclic AMP-responsive element binding protein (CREB) is known to be associated with angiogenesis. In the present study we investigated the possible role of CREB in the expression of vascular endothelial growth factor (VEGF) by mouse macrophages. Over-expression of CREB increased VEGF secretion by cells of the RAW264.7 mouse macrophage cell line. It also increased the promoter activity of a mouse reporter driven by the VEGF promoter, while a dominant negative CREB (DN-CREB) abrogated the activity, suggesting that CREB mediates VEGF transcription. Forskolin, an adenylyl cyclase activator, stimulated VEGF transcription, and the PKA inhibitor H89 abolished this effect. IFN-${\gamma}$, a potent cytokine, stimulated VEGF expression only in part through the PKA-CREB pathway. These results indicate that PKA phosphorylates CREB and so induces VEGF gene expression. An analysis of mutant promoters revealed that one of the putative CREB responsive elements (CREs), at -399 ~ -388 in the promoter, is critical for CREB-mediated VEGF promoter activity, and the significance of this CRE was confirmed by chromatin immunoprecipitation assays.

Protective Effect of Soybean-Derived Phosphatidylserine on the Trimethyltin-Induced Learning and Memory Deficits in Rats

  • An, Yong Ho;Park, Hyun Jung;Shim, Hyun Soo;Choe, Yun Seok;Han, Jeong Jun;Kim, Jin Su;Lee, Hye Jung;Shim, Insop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.337-345
    • /
    • 2014
  • The present study examined the effects of soybean-derived phosphatidylserine (SB-PS) on the learning and memory function and the neural activity in rats with trimethyltin (TMT)-induced memory deficits. The cognitive improving efficacy of SB-PS on the amnesic rats, which was induced by TMT, was investigated by assessing the Morris water maze test and by performing cholineacetyl transferase (ChAT), acetylcholinesterase (AChE) and cAMP responsive element binding protein (CREB) immunohistochemistry. A positron emission tomography (PET) scanning the rat brain was by performed administer 18F-Fluorodeoxy-glucose (18F-FDG). The rats with TMT injection showed impaired learning and memory of the tasks and treatment with SB-PS produced a significant improvement of the escape latency to find the platform in the Morris water maze at the 2nd day compared to that of the MCT group. In the retention test, the SB-PS group showed increased time spent around the platform compared to that of the MCT group. Consistent with the behavioral data, SB-PS 50 group significantly alleviated the loss of acetyl cholinergic neurons in the hippocampus compared to that of the MCT group. Treatment with SB-PS significantly increased the CREB positive neurons in the hippocampus as compared to that of the MCT group. In addition, SB-PS groups increased the glucose uptake in the hippocampus and SB-PS 50 group increased the glucose uptake in the frontal lobe, as compared to that of the MCT group. These results suggest that SB-PS may be useful for improving the cognitive function via regulation of cholinergic marker enzyme activity and neural activity.

Depigmenting Effects of Mistletoe (Viscum album var. coloratum) Extracts (겨우살이 추출물의 미백 효과)

  • Hah, Young-Sool;Kim, Eun-Ji;Goo, Young Min;Kil, Young Sook;Sin, Seung Mi;Kim, Sang Gon;Kang, Ha Eun;Yoon, Tae-Jin
    • Journal of Life Science
    • /
    • v.32 no.5
    • /
    • pp.355-361
    • /
    • 2022
  • Melanin pigments are the main cause of skin color. They are produced in melanocytes and then transferred to keratinocytes, which eventually gives the skin surface a variety of colors. Although many skin-lightening or depigmenting agents have been developed, the demand for materials to reduce pig- mentation is still increasing. Here, we tried to find materials for skin-lightening or depigmentation using natural compounds and found that mistletoe (Viscum album var. coloratum) extracts (ME) had an inhibitory effect on tyrosinase activity. As a result, ME significantly reduced pigmentation in human primary melanocytes. In addition, a promoter reporter assay revealed that ME inhibited the transcription of microphthalmia-associated transcription factor (MITF), melanophilin (MLPH), tyrosinase-related protein-2 (TRP-2), and tyrosinase (TYR) genes in HM3KO melanoma cells. In addition, ME decreased the protein level for pigmentation-related molecules, such as TYR and TRP-1. Furthermore, it markedly inhibited the melanogenesis of zebrafish embryos, an in vivo evaluation model for pigmentation. To elucidate the action mechanism of ME, we investigated its effects on intracellular signaling. Eventually, the ME dramatically decreased the phosphorylation of the cAMP responsive element binding protein (CREB), AKT, and ERK. The data suggest that ME may inhibit the melanogenesis pathway by regulating the signaling pathway related to pigmentation. Taken together, these data propose that ME can be developed as a depigmenting or skin-lightening agent.

The Neuroprotective Effect of White Ginseng (Panax ginseng C. A. Meyer) on the Trimethyltin (TMT)-Induced Memory Deficit Rats (Trimethyltin으로 유도된 기억장애 흰쥐에서 백삼의 신경보호효과)

  • Lee, Seung-Eun;Shim, In-Sop;Kim, Geum-Soog;Yim, Sung-Vin;Park, Hyun-Jung;Shim, Hyun-Soo;Ye, Min-Sook;Kim, Seung-Yu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.6
    • /
    • pp.456-463
    • /
    • 2011
  • The present study examined the effects of Korean white ginseng (WG, Panax ginseng C. A. Meyer) on the learning and memory function and the neural activity in rats with trimethyltin (TMT)-induced memory deficits. The rats were administered with saline or WG (WG 100 or 300 mg/kg, p.o.) daily for 21 days. The cognitive improving efficacy of WG on the amnesic rats, which was induced by TMT, was investigated by assessing the Morris water maze test and by performing immunohistochemistries on choline acetyltransferase (ChAT), acetylcholinesterase (AchE), cAMP responsive element binding protein (CREB) and brain derived neurotrophic factor (BDNF). The rats treated with TMT injection (control group) showed impaired learning and memory of the tasks, but the rats treated with TMT injection and WG administration produced significant improvement of the escape latency to find the platform in the Morris water maze at the 2nd and 4th days compared to that of the control group. In the retention test, the WG 100 and WG 300 groups showed significantly increased crossing number around the platform compared to that of the control group (p < 0.001). Consistently with the behavioral data, result of immunohistochemistry analysis showed that WG 100 mg/kg significantly alleviated the loss of BDNF-ir neurons in the hippocampus compared to that of the control group (p < 0.01). Also, treatment with WG has a trend to be increased the cholinergic neurons in the hippocampal CA1 and CA3 areas as compared to that of the control group. These results suggest that WG may be useful for improving the cognitive function via regulation of neurotrophic activity.

The Inhibitory Effects of Nelumbo nucifera Gaertner Extract on Melanogenesis (연자육 추출물의 멜라닌 합성 저해효과)

  • Lee, Jun Young;Im, Kyung Ran;Jung, Taek Kyu;Yoon, Kyung-Sup
    • KSBB Journal
    • /
    • v.28 no.2
    • /
    • pp.137-145
    • /
    • 2013
  • In order to develop new skin whitening agents, we prepared the $CH_2Cl_2$ layer (NGC) and BuOH layer (NGB) of 75% EtOH extract of the Nelumbinis nucifera Gaertner. We measured their tyrosinase inhibitory activity in vitro and melanin synthesis inhibitory activity in B16-F1 melanoma cells. They did not show inhibitory activity against mushroom tyrosinase but showed melanin synthesis inhibitory activity in a dose-dependent manner. In a melanin synthesis inhibition assay, NGC and NGB suppressed melanin production up to 52% and 46% at a concentration of $100{\mu}g/mL$, respectively. To elucidate the mechanism of the inhibitory effects of NGC and NGB on melanogenesis, we measured the expression of melanogenesis-related proteins by western blot assay. As a result, NGC suppressed the expression of tyrosinase, tyrosinase related protein 1 (TRP-1), tyrosinase related protein 2 (TRP-2), phosphorylated cAMP responsive element binding (p-CREB) protein, and microphthalmia associated transcription factor (MITF). And NGB inhibited the protein expression of tyrosinase and MITF, but had no significant effect on TRP-1, TRP-2, and p-CREB expression. Moreover, NGB increased the expression of phosphorylated extracellular signal-regulated kinase (p-ERK). In addition, we examined the inhibitory effect on the glycosylation of tyrosinase. As a result, NGC and NGB inhibited the activity of ${\alpha}$-glucosidase in vitro and the glycosylation of tyrosinase in B16-F1 melanoma cells. From these results, we concluded that NGC and NGB could be used as active ingredients for skin whitening.

Comparison of Immunohistochemical Expression of CBP(cAMP-responsive Element Binding Protein) Transcriptional Co-activator between Premalignant Lesions and Squamous Cell Carcinomas in the Lungs (전암성 폐병변 및 편평상피세포폐암 조직에서 CBP(cAMP-responsive Ele-ment Binding Protein) 전사 공동 활성인자의 면역조직화학적 발현양상의 비교)

  • Shin, Jong Wook;Kim, Jin Soo;Kim, Mi Kyung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.63 no.2
    • /
    • pp.165-172
    • /
    • 2007
  • Background: The pathogenesis of lung cancer includes the accumulation of multiple genetic abnormalities. The CREB-binding protein(CBP) is one of several transcriptional co-activators among various sequence-specific DNA-binding transcription factors. CBP is involved in a wide range of cellular activities, such as DNA repair, cell growth, differentiation, and apoptosis that are suspected of contributing to tumorigenesis. The goal of this study was to evaluate CBP expression in a series of human lung tissues containing normal epithelium, premalignant lesions(hyperplasia and dysplasia) and squamous cell carcinomas. Materials and Methods: Immunohistochemical staining was performed on formalin-fixed paraffin-embedded sections by use of a monoclonal anti-CBP antibody. CBP expression was compared in samples from 120 patients with premalignant and malignant histological types including 20 metaplastic specimens, 40 dysplastic specimens, and 60 squamous cell carcinomas in the lung. Results: CBP expression was seen in 35% (7/20) of the metaplastic specimens. 65% (26/40) of the dysplastic specimens, and 70% (42/60) of the squamous cell carcinomas (p<0.05). According to celluar atypism, CBP expression was 50% (10/20) of the low-grade dysplastic specimens and 80% (16/20) of the high-grade dysplastic specimens(p <0.01). By cellular differentiation, CBP expression was seen in 95% (19/20) of the well differentiated squamous cell carcinomas, 85% (17/20) of the moderately differentiated carcinomas and 30% (6/20) of the poorly differentiated lesions (p <0.05). Conclusion: These results suggest that CBP may have an important role in malignant transformation of precancerous lung lesions and may be a marker for malignancy.

Physalin D inhibits RANKL-induced osteoclastogenesis and bone loss via regulating calcium signaling

  • Ding, Ning;Lu, Yanzhu;Cui, Hanmin;Ma, Qinyu;Qiu, Dongxia;Wei, Xueting;Dou, Ce;Cao, Ning
    • BMB Reports
    • /
    • v.53 no.3
    • /
    • pp.154-159
    • /
    • 2020
  • We investigated the effects of physalin A, B, D, and F on osteoclastogenesis induced by receptor activator of nuclear factor κB ligand (RANKL). The biological functions of different physalins were first predicted using an in silico bioinformatic tool (BATMAN-TCM). Afterwards, we tested cell viability and cell apoptosis rate to analyze the cytotoxicity of different physalins. We analyzed the inhibitory effects of physalins on RANKL-induced osteoclastogenesis from mouse bone-marrow macrophages (BMMs) using a tartrate-resistant acid phosphatase (TRAP) stain. We found that physalin D has the best selectivity index (SI) among all analyzed physalins. We then confirmed the inhibitory effects of physalin D on osteoclast maturation and function by immunostaining of F-actin and a pit-formation assay. On the molecular level, physalin D attenuated RANKL-evoked intracellular calcium ([Ca(2+)](i)) oscillation by inhibiting phosphorylation of phospholipase Cγ2 (PLCγ2) and thus blocked the downstream activation of Ca2+/calmodulin-dependent protein kinases (CaMK)IV and cAMP-responsive element-binding protein (CREB). An animal study showed that physalin D treatment rescues bone microarchitecture, prevents bone loss, and restores bone strength in a model of rapid bone loss induced by soluble RANKL. Taken together, these results suggest that physalin D inhibits RANKL-induced osteoclastogenesis and bone loss via suppressing the PLCγ2-CaMK-CREB pathway.