• Title/Summary/Keyword: c-type lysozyme

Search Result 25, Processing Time 0.031 seconds

Isolation and Characterization of the C-type Lysozyme Gene from the Common Cutworm Spodoptera litura

  • Kim, Jong-Wan;Yoe, Sung-Moon
    • Animal cells and systems
    • /
    • v.13 no.3
    • /
    • pp.345-350
    • /
    • 2009
  • We have isolated and characterized a new insect chicken type (c-type) lysozyme gene from the common cutworm, Spodoptera litura. The full-length cDNA of Spodoptera lysozyme is cloned by rapid amplification of cDNA ends PCR (RACE-PCR). The isolated cDNA consists of 1039 bp including the coding region for a 142-amino acid residue polypeptide, which included a signal peptide of 21-amino acid residue and a mature protein of 121-amino acid residue. The predicted molecular weight of mature lysozyme and its theoretical isoelectric point from amino acid composition is 13964.8 Da and 9.05, respectively. The deduced amino acid sequence of Spodoptera lysozyme gene shows the highest similarity (96.7%) to Spodoptera exigua lysozyme among other lepidopteran species. Amino acid sequence comparison with other the c-type lysozymes, Spodoptera lysozyme has the completely conserved $Glu^{32}$ and $Asp^{50}$ of the active site and eight Cys residues are completely conserved in the same position as that of other lepidopteran lysozymes.

Lytic Action of Egg White Lysozyme Isolated from Ogol Fowl on Staphylococcus aureus Phage Type 29 (Staphylococcus aureus Phage Type 29에 대한 오골계 난백 Lysozyme의 용균성)

  • Oh, Hong Rock;Lee, Jong Soo;Kim, Chan Jo
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.2
    • /
    • pp.286-294
    • /
    • 1987
  • This experiment was carried out to investigate the bacteriolytic action of the egg white lysozyme isolated from Korean native Ogol fowl and to obtain the data for utilization of the enzyme as a food preservative. Staphyococcus aureus phage type 29 and Bacillus subtilis ATCC 6633 among the microorganisms tested were lyzed by the treatment with 0.05% lysozyme, but Staphylococcus aureus phage type 57 in addition to E. coli etc. was found to be a lysozyme- insensitive species. The lysis of S. aureus phage type 29 was maximized when incubated in nutrient broth (pH 7.0) at $37^{\circ}C$ for 24 hours and suspended it to absorbance 0.6 at 540nm in 0.05M sodium acetate but fer (pH 4.5) and then treated it with the 0.05% lysozyme for 30 min. at $30^{\circ}C$. It was found that the effect of 0.05% lysozyme in combination with 1% glycine on the growth inhibition of S. aurecus phage type 29 increased more 50% than that in the absence of glycine, but not effect with other any additeves and metal ions tested.

  • PDF

Molecular Cloning and Characterization of a New C-type Lysozyme Gene from Yak Mammary Tissue

  • Jiang, Ming Feng;Hu, Ming Jun;Ren, Hong Hui;Wang, Li
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.12
    • /
    • pp.1774-1783
    • /
    • 2015
  • Milk lysozyme is the ubiquitous enzyme in milk of mammals. In this study, the cDNA sequence of a new chicken-type (c-type) milk lysozyme gene (YML), was cloned from yak mammary gland tissue. A 444 bp open reading frames, which encodes 148 amino acids (16.54 kDa) with a signal peptide of 18 amino acids, was sequenced. Further analysis indicated that the nucleic acid and amino acid sequences identities between yak and cow milk lysozyme were 89.04% and 80.41%, respectively. Recombinant yak milk lysozyme (rYML) was produced by Escherichia coli BL21 and Pichia pastoris X33. The highest lysozyme activity was detected for heterologous protein rYML5 (M = 1,864.24 U/mg, SD = 25.75) which was expressed in P. pastoris with expression vector $pPICZ{\alpha}A$ and it clearly inhibited growth of Staphylococcus aureus. Result of the YML gene expression using quantitative polymerase chain reaction showed that the YML gene was up-regulated to maximum at 30 day postpartum, that is, comparatively high YML can be found in initial milk production. The phylogenetic tree indicated that the amino acid sequence was similar to cow kidney lysozyme, which implied that the YML may have diverged from a different ancestor gene such as cow mammary glands. In our study, we suggest that YML be a new c-type lysozyme expressed in yak mammary glands that plays a role as host immunity.

Cloning and Prokaryotic Expression of C-type Lysozyme Gene from Agrius convolvuli

  • Kim, Jong-Wan;Yoe, Sung-Moon
    • Animal cells and systems
    • /
    • v.12 no.3
    • /
    • pp.149-155
    • /
    • 2008
  • We have isolated and characterized Agrius convolvuli cDNA encoding a c-type lysozyme. The cDNA sequence encodes a processed protein of 139 amino acid residues with 19 amino acid residues amino-terminal signal sequence and 120 amino acid residues mature sequence. The amino acid residues responsible for the catalytic activity and the binding of the substrate are conserved. Agrius lysozyme has a high identity to Manduca sexta. Recombinant A. convolvuli lysozyme was expressed in Escherichia coli BL21(DE3) pLysS cells for pGEX 4T-1 expression vector. Their optimal conditions for the fusion protein expression and purification were screened. Lysozyme gene amplified with primers ACLyz BamHI and ACLyz XhoI was ligated into the pGEX 4T-1 vector, which contained the glutathione S-transferase(GST) gene for fusion partner. The fusion protein was induced by IPTG and identified by SDS-PAGE analysis. Molecular weight of the fusion protein was estimated to be about 45 kDa. Recombinant lysozyme, fused to GST, was purified by glutathion-Sepharose 4B affinity chromatography. Western blot analysis of this protein revealed an immunoreactivity with the anti-Agrius lysozyme.

Expression of c-Type Lysozyme from the Fleshy Shrimp Fenneropenaeus chinensis Is Upregulated Following Vibrio anguillarum and Lipopolysaccharide Injection

  • Qiao, Guo;Kim, Su-Kyoung;Cho, Yeong-Rok;Kim, Sukyoung;Jang, In-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.4
    • /
    • pp.267-272
    • /
    • 2013
  • Chicken-type lysozyme (c-lysozyme) is present in shrimp and is active against some bacteria. To further understand the regulation of c-lysozyme in the fleshy shrimp Fenneropenaeus chinensis, we determined the tissue-specific gene expression of c-lysozyme and the time-course of mRNA expression in response to Vibrio anguillarum and lipopolysaccharide (LPS) injection by quantitative reverse real-time polymerase chain reaction. The results showed that c-lysozyme was expressed in all tissues tested, including gill, eyestalk, eye, hemocytes, hepatopancreas, intestine, heart, and pleopod. It was most highly expressed in the intestine followed by the eyestalk, gill, hemocytes and hepatopancreas. The mRNA expression level began to decline in a short time after V. anguillarum challenge and was then upregulated by two fold or more at 24 h post injection (hpi) compared to that at 0 h. Expression was suppressed shortly after LPS injection and began to increase with higher levels of 5.8-, 5.2- and 8.4-fold at 24, 48, and 72 hpi, respectively. Higher expression was sustained and showed a gradual increasing trend until the end of the experiment (72 hpi). These results increase our understanding of the regulation of defense mechanisms and facilitate an evaluation of the effects of probiotics or immunostimulants in shrimp culture.

Molecular Cloning and Characterization of Lysozyme II from Artogeia rapae and its Expression in Baculovirus-infected Insect Cells

  • Bang, In-Seok;Kang, Chang-Soo
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.175-182
    • /
    • 2007
  • The lysozyme II gene of cabbage butterfly Artogeia rapae was cloned from fat body of the larvae injected with E. coli and its nucleotide sequence was determined by the RACE-PCR. It has an open reading frame of 414 bp nucleotides corresponding to 138 amino acids including a signal sequence of 18 amino acids. The estimated molecular weight and the isoelectric point of the lysozyme II without the signal peptide were 13,649.38 Da and 9.11, respectively. The A. rapae lysozyme II (ARL II) showed the highest identity (81%) in the amino acid sequence to Manduca sexta lysozyme among other lepidopteran species. The two catalytic residues ($Glu^{32}$ and $Asp^{50}$) and the eight Cys residue motifs, which are highly conserved among other c-type lysozymes in invertebrates and vertebrates, are also completely conserved. A phylogenetic analysis based on amino acid sequences indicated that the ARL II was more closely related to M. sexta, Hyphantria cunea, Heliothis virescens, and Trichoplusia ni lysozymes. The ARL II gene was expressed in Spodoptera frugiperda 21 insect cells and the recombinant ARL II (rARL II) was purified from cell-conditioned media by cation exchange column chromatography and reverse phase FPLC. The purified rARL II was able to form a clear zone in lysoplate assay against Micrococcus luteus. The lytic activity was estimated to be 511.41 U/mg, 1.53 times higher than that of the chicken lysozyme. The optimum temperature for the lytic activity of the rARL II was $50^{\circ}C$, the temperature dependency of the absolute lytic activity of rARL II was higher than that of the chicken lysozyme at low temperatures under $65^{\circ}C$.

Isolation of an Invertebrate-type Lysozyme from the Body Wall of Spoon Worm, Urechis unicinctus (개불의 체벽으로부터 i-type 라이소자임의 정제)

  • Oh, Hye Young;Park, Nam Gyu
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.300-306
    • /
    • 2018
  • Lysozymes are innate immune factors that play a critical role in the defense against pathogens in various invertebrate animals including spoon worms. In this study, an invertebrate-type lysozyme was isolated from the body wall of spoon worm, Urechis unicinctus. The acidified body wall extract was partially separated using a Sep-Pak C18 cartridge. Among the fractions, the materials that were eluted with 60% methanol/0.1% trifluoroacetic acid showed the most potent antimicrobial activity against Bacillus subtilis KCTC 1021. A series of high performance liquid chromatography (HPLC) steps were then utilized to isolate a single antimicrobial absorbance peak. The molecular weight of the antimicrobial peak was approximated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), which was approximately 13 to 14 kDa. The partial primary structure of this antimicrobial protein that was analyzed, using LC-MS/MS, was CTGGRPPTCEDYAK (1611.69 Da). Homology search of these fourteen residues, using the National Center for Biotechnology Information Basic Local Alignment Search Tool (NCBI BLAST), revealed that the isolated protein was similar to the invertebrate-type lysozymes described in other animals. Then, the antimicrobial and lysozyme enzymatic (muramidase) activities of this protein were assessed. The isolated protein possessed antimicrobial activity and potent muramidase activity, which were comparable to those of hen egg white lysozyme. Therefore, the isolated protein was designated as Urechis unicinctus invertebrate-type lysozyme from the body wall, Uu-iLysb.

Transcriptional Onset of Lysozyme Genes during Early Development in Olive Flounder (Paralichthys olivaceus)

  • Lee, Jang-Wook;Lee, Jeong-Ho;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Kim, Kyung-Kil
    • Development and Reproduction
    • /
    • v.18 no.4
    • /
    • pp.267-274
    • /
    • 2014
  • The immune system in teleost fish is not completely developed during embryonic and larval stages, therefore effective innate mechanisms is very important for survival in such an environment. However, the knowledge of the development of immune system assumed to be restricted. In many species, lysozymes have been considered as important genes of the first line immune defense. The early detection of lysozyme mRNA in previous reports, led to the investigation of its presence in oocytes. As a result, c-type lysozyme mRNA transcripts were detected in unfertilized oocytes indicating maternal transfer. Therefore, we investigated the expression patterns of lysozymes in flounder, including the matured oocyte. In our results, c-type lysozyme mRNA was first detected in unfertilized oocyte stage, observed the significantly decreased until hatching stage, and was significantly increased after hatching stage. On the other hand, g-type lysozyme mRNA transcripts were first detected at late neurula stage, and the mRNA level was significantly increased after 20 dph. It may be suggest that maternally supplied mRNAs are selectively degraded prior to the activation of embryonic transcription. This study will be help in understanding the maturation and onset of humoral immunity during development of olive flounder immune system.

Bi-functional Activities of Chimeric Lysozymes Constructed by Domain Swapping between Bacteriophage T7 and K11 Lysozymes

  • Alcantara, Ethel H.;Kim, Dong-Hee;Do, Su-Il;Lee, Sang-Soo
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.539-546
    • /
    • 2007
  • The lysozymes encoded by bacteriophage T7 and K11 are both bifunctional enzymes sharing an extensive sequence homology (75%). The constructions of chimeric lysozymes were carried out by swapping the N-terminal and C-terminal domains between phage T7 and K11 lysozymes. This technique generated two chimeras, T7K11-lysozyme (N-terminal T7 domain and C-terminal K11 domain) and K11T7-lysozyme (N-terminal K11 domain and C-terminal T7 domain), which are both enzymatically active. The amidase activity of T7K11-lysozyme is comparable with the parental enzymes while K11T7-lysozyme exhibits an activity that is approximately 45% greater than the wild-type lysozymes. Moreover, these chimeric constructs have optimum pH of 7.2-7.4 similar to the parental lysozymes but exhibit greater thermal stabilities. On the other hand, the chimeras inhibit transcription comparable with the parental lysozymes depending on the source of their N-terminals. Taken together, our results indicated that domain swapping technique localizes the N-terminal region as the domain responsible for the transcription inhibition specificity of the wild type T7 and K11 lysozymes. Furthermore, we were able to develop a simple and rapid purification scheme in purifying both the wild-type and chimeric lysozymes.

Functional characterization and expression analysis of c-type and g-like-type lysozymes in yellowtail clownfish (Amphiprion clarkii)

  • Gaeun Kim;Hanchang Sohn;WKM Omeka;Chaehyeon Lim;Don Anushka Sandaruwan Elvitigala;Jehee Lee
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.3
    • /
    • pp.188-203
    • /
    • 2023
  • Lysozymes are well-known antibacterial enzymes that mainly target the peptidoglycan layer of the bacterial cell wall. Animal lysozymes are mainly categorized as g-type, c-type, and i-type based on protein sequence and structural differences. In this study, c-type (AcLysC) and g-like-type (AcLysG-like) lysozymes from Amphiprion clarkii were characterized in silico via expressional and functional approaches. According to in silico analysis, open reading frames of AcLysC and AcLysG-like were 429 bp and 570 bp, respectively, encoding the corresponding polypeptide chains with 142 and 189 amino acids. Elevated expression levels of AcLysC and AcLysG-like were observed in the liver and the heart tissues, respectively, as evidenced by quantitative real-time polymerase chain reaction assays. AcLysC and AcLysG-like transcript levels were upregulated in gills, head kidney, and blood cells following experimental immune stimulation. Recombinant AcLysC exhibited potent lytic activity against Vibrio anguillarum, whereas recombinant AcLysG-like showed remarkable antibacterial activity against Vibrio harveyi and Streptococcus parauberis, which was further evidenced by scanning electron microscopic imaging of destructed bacterial cell walls. The findings of this study collectively suggest the potential roles of AcLysC and AcLysG-like in host immune defense.