• 제목/요약/키워드: c-shaped steel

검색결과 88건 처리시간 0.022초

복합 프리캐스트 콘크리트 패널의 구조 거동에 대한 실험적 연구 (A Experimental Study on Structural Behavior of Hybrid Precast Concrete Panel)

  • 이상섭;박금성
    • 대한건축학회논문집:구조계
    • /
    • 제34권9호
    • /
    • pp.11-18
    • /
    • 2018
  • As the height of the modular buildings increases, their stability becomes more and more dependent on the core. All traditional construction methods in structural concrete and steel can be utilized for cores in modular buildings but a core system with dry connection is more desirable to complete a greater degree of factory finish and faster erection of modular buildings. In order to do that, the hybrid PC(precast concrete) panel, which has a pair of C-shaped steel beams combined at the top and bottom of a concrete wall, was developed, In this study the cyclic lateral loading test on the hybrid PC panel is carried out and the panel configurations are examined to enhance the structural performance in comparison with the RC wall. Experimental results show that the strength of hybrid PC panel is about 70% of thar ot RC wall and the anchorage of vertical reinforcing bar welded to C-shaped steel beam needs to be improved.

고온에 노출된 H-형강 압축재의 유한요소해석 (Finite Element Analysis of H-Shaped Compressive Member Exposed High Temperatures)

  • 이수헌;이희두;최준호;신경재
    • 한국화재소방학회논문지
    • /
    • 제30권5호
    • /
    • pp.54-59
    • /
    • 2016
  • 구조재료 중에서 강재는 불연성 재료이지만 열전도가 높고, 온도상승에 의하여 강성의 저하가 높은 편이다. 일반적으로 강재의 항복강도 및 탄성계수는 $350^{\circ}C$에서 70%, $600^{\circ}C$에서 50% 이하로 감소하기 때문에 고온에서의 철골구조의 재하능력은 급격히 감소하게 된다. 통상 내화구조로 인정받기 위해서는 공인기관으로부터의 품질시험을 거쳐야 한다. 하지만, 실물내화실험은 공간과 시간의 제약, 고비용의 문제점을 안고 있으므로, 본 연구에서는 ABAQUS 프로그램의 유한요소법을 이용한 열해석을 수행하여 압축을 받는 H-형강기둥의 내화실험과의 비교로 해석모델의 신뢰성을 입증하고, 실물실험의 보완책으로의 가능성을 제시한다.

균질화, 열간단조, 어닐링 조건이 개량된 STD61 열간 금형강의 미세조직과 경도에 미치는 영향 (The Effects of Homogenization, Hot-Forging, and Annealing Condition on Microstructure and Hardness of a Modified STD61 Hot-Work Tool Steel)

  • 박규진;강민우;정재길;이영국;김병훈
    • 열처리공학회지
    • /
    • 제26권2호
    • /
    • pp.72-79
    • /
    • 2013
  • The effects of homogenization, hot-forging, and annealing condition on microstructure and hardness of a modified STD61 hot-work tool steel were investigated. The ingot specimen had a dendritic structure consisting of bainite and martensite. Spherical VC particles of approximately 50 nm and cuboidal (V,Ti)C particles of about 100 nm were observed in the ingot specimen. After homogenization, the dendritic structure was blurred, and the difference in hardness between martensite and bainite became narrow, resulting in the more homogeneous microstructure. Needle-shaped non-equilibrium $(Fe,Cr)_3C$ particles were additionally observed in the homogenized specimen. The hot-forged specimen had bainite single phase with spherical VC, cuboidal (V,Ti)C, and needle-shaped $(Fe,Cr)_3C$ particles. After annealing at $860^{\circ}C$, the microstructures of specimens were ferrite single phase with various carbides such as VC, $(Fe,Cr)_7C_3$, and $(Fe,Cr)_{23}C_6$ because of relatively slow cooling rates. The size of carbides in annealed specimens decreased with increasing cooling rate, resulting in the increase of hardness.

LNG저장탱크의 멤브레인용 국산 304 스테인리스강의 기계적성질 및 피로수명 평가 (The Evaluation of Mechanical Properties and Fatigue Life for Domestic 304 Stainless Steel Used as Membrane Material in LNG Storage Tank)

  • 김형식
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1644-1650
    • /
    • 2001
  • Mechanical properties of domestic 374 stainless steel have been evaluated fur membrane material used in LNG storage tank. LNG tank is operated around -162$^{\circ}C$. The temperature of membrane depends on LNG level. Accordingly, the membrane material is deteriorated by variation of liquid pressure and temperature. Tensile test and fatigue life test were performed at room temperature and -l62$^{\circ}C$ per code requirements. Especially the biaxial fatigue life test was conducted with shaped membrane sheet at a thermal strain of $\Delta$T=190$^{\circ}C$ The test results obtained with the domestic 304 stainless steel showed better properties compared to the values required by code.

VC 및 Co함유 고속도공구강 분말의 볼밀링 및 소결거동 (Ball Milling and Sintering Behavior of High Speed Steel Powders Containing VC and Co)

  • 김용진
    • 한국분말재료학회지
    • /
    • 제3권3호
    • /
    • pp.181-187
    • /
    • 1996
  • Cobalt and VC powders were ball milled with M2 grade high speed steel powders under various ball to powder ratios. The powders milled under higher ball to powder ratio become finer, more irregular and have a broader size distribution, and thus possess a lower compressibility and a better sinterability regarding densification. Increasing the ball to powder ratio lowered the sintering temperature to obtain the density level necessary to isolate all the pores. Lowering the sintering temperature is very critical to maintain fine microstructure since grain and carbide coarsening are accelerated by higher sintering temperature due to more liquid phase formation. The powders obtained by ball milling at 20 to 1 ratio has the lowest compressibility but has the best sinterability, almost compatible to unmilled pure M2 powders. A sintered body over 97% theoretical density with fine microstructures having average grain size of ~10 microns was obtained from the powder by sintering at 1260 $^{\circ}C$ for 1 hour in vacuum. XRD results indicate that two types of carbides are mainly present in the sintered structure, MC and $M_{6}C$ type. The MC type carbides are more or less round shaped and mainly located at the grain boundaries whereas the $M_{6}C$ type are angular shaped and mainly located inside the grains.

  • PDF

C형 강재-목재 합성보의 휨성능 평가에 관한 실험 연구 (An Experimental Study on Flexural Performance Evaluation of C-Shaped Steel-Timber Composite Beams)

  • 오근영;이상섭;박금성;부윤섭
    • 한국건축시공학회지
    • /
    • 제24권3호
    • /
    • pp.331-341
    • /
    • 2024
  • 본 연구에서는 구조용 집성재 보의 휨강도 및 연성능력을 보완하고자 강재-목재 합성보의 휨성능을 평가하였다. 실험체는 구조용 집성재 보 1식과 강재-목재 합성보 2식으로 구성하였다. 강재-목재 합성보는 부착 방법에 따라 액상형 접착제와 나사못을 사용하여 휨성능을 평가하였다. 실험결과, 강재-목재 합성보는 구조용 집성재 보에 비하여 구조성능이 약 2~3배 높아 휨강도 및 연성능력이 충분히 확보된 것으로 나타났다. 또한, 액상형 접착제를 사용한 경우가 나사못을 적용한 실험체에 비하여 우수한 구조성능을 보여주었다.

합금강을 이용한 스퍼기어의 정밀 냉간 단조 (Precision Cold Forging of Spur Gear Using the Alloy Steel)

  • 최재찬;최영
    • 소성∙가공
    • /
    • 제6권6호
    • /
    • pp.500-507
    • /
    • 1997
  • The conventional closed-die forgings had been applied to the forging of spur gears. But the forgings require high forging-pressure. In this paper, new precision forging technology have been developed. The developed technology is two steps forging process. Good shaped products are forged successfully with lower forging-pressure than those of conventional forging. The accuracy of the forged spur gear obtained by new precision forging technology is set nearly equal to that of cut spur gear of fourth and fifth class in Korean industrial standard.

  • PDF

합금강을 이용한 스퍼기어의 정밀 냉간 단조 (Precision Cold Forging of Spur Gear Using the Alloy Steel)

  • 최재찬;최영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.172-175
    • /
    • 1997
  • The conventional closed-die forgings had been applied to the forging of spur gears. But the forgings require high forging-pressure. In this paper, new precision forging technology have been developed. The developed technology is two steps forging process. Good shaped products are forged successfully with lower forging-pressure than those of conventional forging

  • PDF

반응소결법에 의해 엔진밸브 형상으로 제조한 TiAl-Mn 금속간화합물의 특성 (Processing and Properties of Engine Valve-shaped TiAl-Mn Intermetallics by Reactive Sintering)

  • 김영진
    • 한국분말재료학회지
    • /
    • 제4권4호
    • /
    • pp.243-251
    • /
    • 1997
  • Engine valve-shaped TiAl-Mn intermetallics containing 43.5 to 47.5at%Al (Mn/Al=0.036) are successively fabricated by reactive sintering the elemental powder mixtures near-net shaped by extrusion and die forging. A duplex structure consisted of lamellar grains and equiaxed $\gamma$ grains is developed for all compositions, and the areal fraction of the lamellar grains(or equiaxed $\gamma$ grains) decreases (or increases) with increasing Al content. As Al content increased, the elongation increases with accompanying decrease in yield strength and ultimate tensile strength at both room temperature and 80$0^{\circ}C$. This indicates that the suitable composition is Ti-45at%Al-1.6at%Mn in considering the balance of ambient and elevated tensile properties. The reactive-sintered Ti-45Al-1.6Mn alloy shows superior oxidation resistance not only to the plasma arc melted one but also to the heat resistance steel STR35(representative exhaust valve head material for automotive engine). The reactive-sintered Ti-45Al-1.6Mn alloy coated with an oxidizing scale exhibits a better wear resistance than induction hardened martensitic steel STR11(representative exhaust valve tip material for automotive engine).

  • PDF

ML-based prediction method for estimating vortex-induced vibration amplitude of steel tubes in tubular transmission towers

  • Jiahong Li;Tao Wang;Zhengliang Li
    • Structural Engineering and Mechanics
    • /
    • 제90권1호
    • /
    • pp.27-40
    • /
    • 2024
  • The prediction of VIV amplitude is essential for the design and fatigue life estimation of steel tubes in tubular transmission towers. Limited to costly and time-consuming traditional experimental and computational fluid dynamics (CFD) methods, a machine learning (ML)-based method is proposed to efficiently predict the VIV amplitude of steel tubes in transmission towers. Firstly, by introducing the first-order mode shape to the two-dimensional CFD method, a simplified response analysis method (SRAM) is presented to calculate the VIV amplitude of steel tubes in transmission towers, which enables to build a dataset for training ML models. Then, by taking mass ratio M*, damping ratio ξ, and reduced velocity U* as the input variables, a Kriging-based prediction method (KPM) is further proposed to estimate the VIV amplitude of steel tubes in transmission towers by combining the SRAM with the Kriging-based ML model. Finally, the feasibility and effectiveness of the proposed methods are demonstrated by using three full-scale steel tubes with C-shaped, Cross-shaped, and Flange-plate joints, respectively. The results show that the SRAM can reasonably calculate the VIV amplitude, in which the relative errors of VIV maximum amplitude in three examples are less than 6%. Meanwhile, the KPM can well predict the VIV amplitude of steel tubes in transmission towers within the studied range of M*, ξ and U*. Particularly, the KPM presents an excellent capability in estimating the VIV maximum amplitude by using the reduced damping parameter SG.