• Title/Summary/Keyword: c-fos protein

Search Result 187, Processing Time 0.028 seconds

인슐린의 신호전달 기전 : Transcription Factor AP-1 의 역활

  • 김성진
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.10a
    • /
    • pp.17-21
    • /
    • 1995
  • 대부분의 인슐린의 작용들은 인슐린 수용체를 통하여 이루어진다. 인슐린이 수용체에 결합하면, 수용체 고유의 tyrosine kinase 효소활성의 증가를 유발시키며, 결과적으로 세포내에 존재하는 기질 단백질, IRS-1, 의 tyrosine 잔기의 인산화를 증가시키게 된다. 이후, 여러 형태의 serine / threonine protein kinase 의 연속적인 활성화가 일어난다. 이들에 부가해서, 인슐린의 효자는 세포핵 내에까지 전달되어 유전자 발현의 조절과 같은 세포핵 고유의 활동에도 관여한다. 현재, 세포막에서 시작된 인슐린의 신호들이 세포핵까지 전달되는 정확한 기전에 대해서는 알려진 바 없지만, 최근의 연구에 의하면 MAP Kinase 와 S6 Kinase 그리고 Transcription Factor AP-1의 중요성이 제시되고 있다. 특히 유전자 조절 기전에는 핵단백질인 transcription factor의 인산화 반응이 큰 역할을 한다고 보고되고 있는바, 본 연구에서 AP-1. transcription factor 의 인산화 반응이 인슐린의 신호전달계에 미치는 역할에 대하여 고찰하였다. 요약하면, AP-1 transcription factor의 구성원인 c-Jun, c-Fos 그리고 Fos 관련 단백질들의 인산화가 인슐린에 의해 증가되며, 동시에 그들의. DNA-binding activity 와 유전자 발현의 활성이 증가됨을 밝힘으로써, AP-1 transcription factor의 인산화 반응이 인슐린의 핵 내에서의 작용기전에 중요한 역할을 함이 제시되고 있다. 또한 AP-1 의 인산화 반응에 관여하는 세포핵 protein kinase로서 Casein Kinase II 의 중요성이 밝혀졌다.

  • PDF

Activities of E6 Protein of Human Papillomavirus 16 Asian Variant on miR-21 Up-regulation and Expression of Human Immune Response Genes

  • Chopjitt, Peechanika;Pientong, Chamsai;Bumrungthai, Sureewan;Kongyingyoes, Bunkerd;Ekalaksananan, Tipaya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3961-3968
    • /
    • 2015
  • Background: Variants of human papillomavirus (HPV) show more oncogenicity than do prototypes. The HPV16 Asian variant (HPV16As) plays a major role in cervical cancer of Asian populations. Some amino acid changes in the E6 protein of HPV16 variants affect E6 functions such as p53 interaction and host immune surveillance. This study aimed to investigate activities of HPV16As E6 protein on modulation of expression of miRNA-21 as well as interferon regulatory factors (IRFs) 1, 3, 7 and c-fos. Materials and Methods: Vectors expressing E6 protein of HPV16As (E6D25E) or HPV16 prototype (E6Pro) were constructed and transfected into C33A cells. HCK1T cells expressing E6D25E or E6Pro were established by transducing retrovirus-containing E6D25E or 16E6Pro. The E6AP-binding activity of E6 and proliferation of the transfected C33A cells were determined. MiR-21 and mRNA of interesting genes were detected in the transfected C33A cells and/or the HCK1T cells, with or without treatment by culture medium from HeLa cells (HeLa-CM). Results: E6D25E showed binding activity with E6AP similar to that of E6Pro. Interestingly, E6D25E showed a higher activity of miR-21 induction than did E6Pro in C33A cells expressing E6 protein. This result was similar to the HCK1T cells expressing E6 protein, with HeLa-CM treatment. The miR-21 up-regulation significantly corresponded to its target expression. Different levels of expression of IRFs were also observed in the HCK1T cells expressing E6 protein. Interestingly, when treated with HeLa-CM, IRFs 1, 3 and 7 as well as c-fos were significantly suppressed in the HCK1T cells expressing E6D25E, whereas those in the HCK1T cells expressing E6Pro were induced. A similar situation was seen for IFN-${\alpha}$ and IFN-${\beta}$. Conclusions: E6D25E of the HPV16As variant differed from the E6 prototype in its activities on epigenetic modulation and immune surveillance and this might be a key factor for the important role of this variant in cervical cancer progression.

Synthetic Curcumin Derivatives Inhibit Jun-Fos-DNA Complex Formation

  • Kim, Hyun-Kyung;Yang, Chul-Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1769-1774
    • /
    • 2004
  • Jun/Fos, a crucial factor in transmitting the tumor-promoting signal from the extracellular environment to the nuclear transcription machinery, has a dimerization interface possessing several coiled structural properties. Jun and Fos can interact with the DNA regulatory region, AP-1 (Activator Protein-1), which is composed of 5'-TGAC/GTCA-3'.$^1$ Curcumin is a well-known anticancer and anti-inflammatory compound.$^{2,3}$ It also acts as an inhibitor of the Jun-Fos function. c-Fos and c-Jun with a bZIP region are overexpressed in BL21 E. coli and purified with an $Ni^{2+}$ affinity column. The inhibitors of Fos-Jun-AP-1 complex formation were searched through the EMSA (electrophoresis mobility shift assay) experiment, and new curcuminoids were synthesized and investigated as to their inhibitory effect on the same system. Two curcuminoids showed a stronger inhibitory effect than curcumin. This inhibitory activity was quantified with EMSA. 1,7-bis(4-methyl)-1,6-heptadiene-3,5-dione (BJC003) and 1,7-bis(4-hydroxy-5-methoxy-3-nitrophenyl)-1,6-heptadiene-3,5-dione (BJC005) showed remarkably high inhibitory activities. $IC_{50}$ of 1,7-bis(4-methyl)-1,6-heptadiene-3,5-dione (BJC003) and 1,7-bis(4-hydroxy-5-methoxy-3-nitrophenyl)-1,6-heptadiene-3,5-dione (BJC005) are 8.98 ${\mu}M$ and 5.40 ${\mu}M$, respectively. However, 1,7-bis(4-methyl-3-nitrophenyl)-1,6-heptadiene-3,5-dione (BJC004) did not show inhibitory activity.

Effects of Electroacupuncture on the excitability in Medial Vestibular Nuclei of Rats (흰쥐의 내측 전정신경핵 흥분성에 대한 전침자극의 효과)

  • Kim, Jae-Hyo;Lee, Sung-Ho;Sohn, In-Chul;Kim, Young-Sun;Kim, Min-Sun
    • Korean Journal of Acupuncture
    • /
    • v.26 no.3
    • /
    • pp.27-42
    • /
    • 2009
  • Objectives : The vestibular system detects head movement and serve to regulate and maintain the equilibrium and orientation of the body. It is known that the vestibular imbalance leads to vestibular symptoms such as nausea, vomiting, vertigo and postural disturbance. The objectives of the present study were to examine a modification of the dynamic activities of medial vestibular nucleus (MVN) neurons following electroacupuncture (EA) of GB43 (Hyepgye). Methods : In Sprague-Dawley rats weighing $250{\sim}300g$, dynamic responses induced by sinusoidal whole body rotation about vertical axis at 0.2 Hz were observed in MVN of rats during EA of GB43 (Hyepgye) with 0.2 ms, 40 Hz and $600{\pm}200{\mu}A$. Also, expression of cFos protein was observed 2 hours after EA for 30 mins. Results : In dynamic response of vestibular neuron, the excitatory or inhibitory responses of gain were predominant in the ipsilateral MVN neurons during EA but not predominant in the contralateral MVN. Most neurons showing decreased gain were classified to inhibitory responses of spontaneous firing discharge during EA and ones showing increased gain were classified to excitatory response of spontaneous firing discharge during EA. Also, EA of the left GB43 (Hyepgye) for 30 mins produced the expression of cFos protein in MVN, inferior olive (IO) and solitary tract nuclei (SOL). Spatial expressions of cFos protein were predominant in the contralateral MVN, ipsilateral IO and bilateral SOL. Conclusion : These results suggest that the excitability of MVN neurons was influenced by EA of GB43 (Hyepgye) and EA may be related to the convergence on MVN.

  • PDF

Effect of Essential Amino Acid Deficient Diets in Feeding Response and c-fos Expression in Rats Brain in Response to Methionine Deficiency (필수아미노산 결핍에 의한 섭식반응과 Methionine 결핍이 흰쥐의 뇌내 c-fos 발현에 미치는 영향)

  • Kim, C.H.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.727-738
    • /
    • 2002
  • This study was conducted to investigate the effect of essential amino acid(EAA) deficient diets on short-term feeding response and the Fos expression in brain area when methionine deficiency diet fed, and thereby to know the mechanism of feed intake regulation. In all trials, experimental diets were formulated with pure amino acid mixture to level of 15% nitrogen. Rats were adapted to a 6-hr single-meal feeding per day(17:00${\sim}$21:00). Feed intake and body weight were monitored every hour after 7-day of feeding of individual EAA deficient diets in Exp. Ⅰ. In Exp. Ⅱ, Fos immuno- histochemistry was determined in various regions of brain to identify the regions that is related to suppressed feed intake following feeding methionine-deficient diet. Fos expression was examined to know the initial sensitive region in the brains of rats at 3h after feeding of the control and methionine deficient diet(-Met). Initial response to EAA deficiency diets was severely depressed in methionine deficiency diet, but the depression was low in threonine deficiency diet. However, the feed intake at 3rd day in rats was depressed in the order of His(71%), Leu(68%), Ile(66%), Thr(63%), Trp(61%), Val(55%), Phe(52%), Met(51%), Lys(44%) and Arg(24%). Fos immunoreaction in neural regions(PPC, amygdala and EPC) of pyrifrom cortex was increased in the -Met group more than in the control diet group, but those in LH, VMH and PVM were similar. Thus, based on these data, the PPC was identified as the initial response area in the -EAA diet.

Curcumin Derivatives Inhibit the Formation of Jun-Fos-DNA Complex Independently of their Conserved Cysteine Residues

  • Park, Chi-Hoon;Lee, Ju-Hyung;Yang, Chul-Hak
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.474-480
    • /
    • 2005
  • Curcumin, a major active component of turmeric, has been identified as an inhibitor of the transcriptional activity of activator protein-1 (AP-1). Recently, it was also found that curcumin and synthetic curcumin derivatives can inhibit the binding of Jun-Fos, which are the members of the AP-1 family, to DNA. However, the mechanism of this inhibition by curcumin and its derivatives was not disclosed. Since the binding of Jun-Fos dimer to DNA can be modulated by redox control involving conserved cysteine residues, we studied whether curcumin and its derivatives inhibit Jun-Fos DNA binding activity via these residues. However, the inhibitory mechanism of curcumin and its derivatives, unlike that of other Jun-Fos inhibitors, was found to be independent of these conserved cysteine residues. In addition, we investigated whether curcumin derivatives can inhibit AP-1 transcriptional activity in vivo using a luciferase assay. We found that, among the curcumin derivatives examined, only inhibitors shown to inhibit the binding of Jun-Fos to DNA by Electrophoretic Mobility Shift Assay (EMSA) inhibited AP-1 transcriptional activity in vivo. Moreover, RT-PCR revealed that curcumin derivatives, like curcumin, downregulated c-jun mRNA in JB6 cells. These results suggest that the suppression of the formation of DNA-Jun-Fos complex is the main cause of reduced AP-1 transcriptional activity by curcuminoids, and that EMSA is a suitable tool for identifying inhibitors of transcriptional activation.

Activation of JNK and c-Jun Is Involved in Glucose Oxidase-Mediated Cell Death of Human Lymphoma Cells

  • Son, Young-Ok;Jang, Yong-Suk;Shi, Xianglin;Lee, Jeong-Chae
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.545-551
    • /
    • 2009
  • Mitogen-activated protein kinases (MAPK) affect the activation of activator protein-1 (AP-1), which plays an important role in regulating a range of cellular processes. However, the roles of these signaling factors on hydrogen peroxide ($H_2O_2$)-induced cell death are unclear. This study examined the effects of $H_2O_2$ on the activation of MAPK and AP-1 by exposing the cells to $H_2O_2$ generated by either glucose oxidase or a bolus addition. Exposing BJAB or Jurkat cells to $H_2O_2$ affected the activities of MAPK differently according to the method of $H_2O_2$ exposure. $H_2O_2$ increased the AP-1-DNA binding activity in these cells, where continuously generated $H_2O_2$ led to an increase in mainly the c-Fos, FosB and c-Jun proteins. The c-Jun-$NH_2$-terminal kinase (JNK)-mediated activation of c-Jun was shown to be related to the $H_2O_2$-induced cell death. However, the suppression of $H_2O_2$-induced oxidative stress by either JNK inhibitor or c-Jun specific antisense transfection was temporary in the cells exposed to glucose oxidase but not to a bolus $H_2O_2$. This was associated with the disruption of death signaling according to the severe and prolonged depletion of reduced glutathione. Overall, these results suggest that $H_2O_2$ may decide differently the mode of cell death by affecting the intracellular redox state of thiol-containing antioxidants, and this depends more closely on the duration exposed to $H_2O_2$ than the concentration of this agent.

The expression of c-fos and HSP70 by the Capsaicin injection in the spinal cord(dorsal horn) (Capsaicin 적용 후 손상된 흰쥐 척수내 c-fos와 HSP70의 발현)

  • Kim, Dong-Hyun;Kim, Souk-Boum;Baek, Su-Jeong;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.1
    • /
    • pp.131-137
    • /
    • 2002
  • C-fos는 원종양유전자(proto-oncogene)인 v-fos의 세포 동족체로써, 성장인자나 신경전달 물질에 의해 수분 내에 다양한 형태의 세포에서 활성화된다. Fos단백질은 스트레스와 통증 과정의 신호전달기전에서 세포활동을 조절하는 3차전령으로 활동한다. 열충격 단백질(Heat shock protein : 이하 HSP)은 계통발생학적으로 초기 척추 동물에서부터 발현되며 생체방어체계의 중요한 인자로 세포가 고열, 외상, 허혈 등의 스트레스에 직면했을 때 발현이 증가하는 단백질로 알려져 있다. 본 연구에서는 캡사이신(capsaicin)으로 말초 신경병변을 유발시킨 후 통각신경활성의 지표로 이용되는 원종양 유전자인 c-fos의 발현과 열 또는 스트레스로 야기되는 손상에 대한 조직의 방어작용으로 발현되는 HSP 70의 발현을 동시에 관찰함으로서, 급성으로 유발된 말초 신경병변의 확인과 동시에 실험동물 체내에서 방어적인 역할을 밝히는 일환으로 이 실험을 실시하였다. 본 실험의 결과는 다음과 같다; 1. 척수 등쪽뿔 천층(Laminae I and II)에서 각각 c-fos와 HSP70을 항원으로 하는 면역조직화학적 방법으로 염색한 표본에서 0.9% NaCI 투여 2시간 후 c-fos와 HSP70의 양성을 나타내는 세포는 전혀 없음을 알 수 있었다. 2. 척수 등쪽뿔 천층에서 c-fos 단백질을 항원으로 하는 면역조직화학적 방법으로 염색한 표본에서 Capsaicin 투여 2시간 후 c-fos 단백질에 양성을 나타내는 세포가 많이 발현됨을 육안적 관찰로서 알 수 있었다. 3. 척수 등쪽뿔 천층에서 HSP70을 항원으로 하는 면역조직화확적 방법으로 염색한 표본에서 Capsaicin 투여 2시간 후 HSP7O의 양성을 나타내는 세포가 보통수준으로 발현됨을 육안적 관찰로서 알 수 있었다. 이 실험의 결과로 볼 때, 화학적인 신경병변 유발물질에 의한 손상을 방어하기 위해서 체내에는 내인성 물질이 형성될 것이라는 추측과 c-fos 가 다른 유전자의 발현을 유도한다는 점을 함께 고려 하였을때, Capsaicin에 의한 말초 신경병변에서 c-fos 발현이 많이 나타나는 것은 손상을 방어하는 물질의 생성에 관여하기 때문이며, 방어물질 중 이 실험에서 본 HSP70도 증가한 내인성 방어물질의 하나라고 할 수 있을 것이다.

  • PDF

Ginsenoside Rg2 inhibits osteoclastogenesis by downregulating the NFATc1, c-Fos, and MAPK pathways

  • Sung-Hoon Lee;Shin-Young Park;Jung Ha Kim;Nacksung Kim;Junwon Lee
    • BMB Reports
    • /
    • v.56 no.10
    • /
    • pp.551-556
    • /
    • 2023
  • Ginsenosides, among the most active components of ginseng, exhibit several therapeutic effects against cancer, diabetes, and other metabolic diseases. However, the molecular mechanism underlying the anti-osteoporotic activity of ginsenoside Rg2, a major ginsenoside, has not been clearly elucidated. This study aimed to determine the effects of ginsenoside Rg2 on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. Results indicate that ginsenoside Rg2 inhibits RANKL-induced osteoclast differentiation of bone marrow macrophages (BMMs) without cytotoxicity. Pretreatment with ginsenoside Rg2 significantly reduced the RANKL-induced gene expression of c-fos and nuclear factor of activated T-cells (Nfatc1), as well as osteoclast-specific markers tartrate-resistant acid phosphatase (TRAP, Acp5) and osteoclast-associated receptor (Oscar). Moreover, RANKL-induced phosphorylation of mitogen-activated protein kinases (MAPKs) was decreased by ginsenoside Rg2 in BMM. Therefore, we suggest that ginsenoside Rg2 suppresses RANKL-induced osteoclast differentiation through the regulation of MAPK signaling-mediated osteoclast markers and could be developed as a therapeutic drug for the prevention and treatment of osteoporosis.