DOI QR코드

DOI QR Code

Effect of Essential Amino Acid Deficient Diets in Feeding Response and c-fos Expression in Rats Brain in Response to Methionine Deficiency

필수아미노산 결핍에 의한 섭식반응과 Methionine 결핍이 흰쥐의 뇌내 c-fos 발현에 미치는 영향

  • Kim, C.H. (Institute of animal resources, Kangwon National University)
  • 김창혁 (강원대학교 동물자원공동연구소)
  • Published : 2002.12.31

Abstract

This study was conducted to investigate the effect of essential amino acid(EAA) deficient diets on short-term feeding response and the Fos expression in brain area when methionine deficiency diet fed, and thereby to know the mechanism of feed intake regulation. In all trials, experimental diets were formulated with pure amino acid mixture to level of 15% nitrogen. Rats were adapted to a 6-hr single-meal feeding per day(17:00${\sim}$21:00). Feed intake and body weight were monitored every hour after 7-day of feeding of individual EAA deficient diets in Exp. Ⅰ. In Exp. Ⅱ, Fos immuno- histochemistry was determined in various regions of brain to identify the regions that is related to suppressed feed intake following feeding methionine-deficient diet. Fos expression was examined to know the initial sensitive region in the brains of rats at 3h after feeding of the control and methionine deficient diet(-Met). Initial response to EAA deficiency diets was severely depressed in methionine deficiency diet, but the depression was low in threonine deficiency diet. However, the feed intake at 3rd day in rats was depressed in the order of His(71%), Leu(68%), Ile(66%), Thr(63%), Trp(61%), Val(55%), Phe(52%), Met(51%), Lys(44%) and Arg(24%). Fos immunoreaction in neural regions(PPC, amygdala and EPC) of pyrifrom cortex was increased in the -Met group more than in the control diet group, but those in LH, VMH and PVM were similar. Thus, based on these data, the PPC was identified as the initial response area in the -EAA diet.

본 시험은 각각의 필수아미노산 결핍사료 섭취에 의한 단기간의 섭식반응과 methionine 결핍(-Met) 사료 섭취시 뇌내 각 부위에 나타나는 Fos 면역반응을 조사하여 아미노산 결핍이 뇌내 섭식반응과 관련있는 부위를 명확히 알고자 수행하였다. 실험사료의 단백질원은 정제아미노산을 이용하였다. 시험에 이용된 모든 사료의 질소원은 순수 아미노산 혼합물을 이용하였으며, 사료내 단백질 함량은 15%로 하였다. 사료는 하루 6시간 동안 섭취하도록 적응을 시켰으며(17:00${\sim}$21:00, meal feeding method), 사료섭취량과 증체량은 사료급여 7일째부터 매시간 측정하였다. 실험 1에서는 각 필수아미노산 결핍사료가 사료섭취량, 체중 변화 및 섭식패턴에 미치는 영향을 관찰하였고, 실험 2에서는 Fos 면역조직 화학적 방법을 사용하여 methio- nine 결핍사료에 대하여 회피 반응을 나타내는 동안에 활성을 보이는 뇌의 영역을 확인하였다. 각 필수아미노산 결핍사료 섭취에 따른 초기 섭식 억제 정도는 methionine이 가장 강하게 나타난 반면 threonine이 가장 약하였다. 결핍사료 급여 3일째의 사료섭취량은 대조구 사료에 비하여 histidine(71%), leucine(68%), isoleucine (66%), threonine(63%), tryptophan(61%), valine (55%), phenylalanine(52%), methionine(51%), lysine(44%), arginine(24%) 순으로 억제되었다. 뇌 신경 영역에 Fos 면역활성은 PPC, amygdala 및 endopyriform cortex(EPC) 부분이 대조구에 비하여 강한 활성을 나타냈으나, LH, VMH 및 PVM에서는 대조구와 처리구가 비슷하게 나타냈다. 따라서 본 연구의 결과로 미루어 뇌내 PPC는 필수아미노산 결핍에 반응하는 초기 인식부위라는 것을 확인할 수 있었다.

Keywords

References

  1. Anderson G. H. 1979. control of protein and energy intake: Role of plasma amino acids and brain neurotransmitters. Can. J. Physiol. Phar- macol. 57:1043.
  2. Bellinger L. L., Williams, F. E., Rogers, Q. R. and Gietzen, D. W. 1995. Liver denervation attenuates the hypophagia produced by an imbalanced amino acid diet. Physiol. Behav., 59: 925.
  3. Beverly, J. L., Gietzen, D. W. and Rogers, Q. R. 1991. Protein synthesis in the prepyriform cortex: Effects on intake of an amino acid-imbalanced diet by sprague-dawley rats. J. Nutr., 121:754-761.
  4. Firman, J. D. and Kuenzel, W. J. 1988. Neuroa- natomical regions of the chick brain involved in monitoring amino acid- deficient diets. Brain. Res. Bull. 21:637.
  5. Gietzen, D. W., Leung, P. M. B. and Rogers, Q. R. 1989. Dietary amino acid imbalance and Neuchemical changes in the three hypothalamic areas. Physiol. Behav., 46:503.
  6. Gietzen D. W. 1993. Neural metabolisms in the responses to amino acid deficiency. J. Nutr., 123:610.
  7. Hanley, M. R. 1988. Proto-oncogenes in the nervous system. Neuron, 175.
  8. Jiang, J. C. and Gietzen, D. W. 1994. Anorectic response to amino acid imbalance : A selective serotonin 3 effect ? Pharmacol. Biochem. Behav., 47:59.
  9. Kim, C. H., Tanaka, H. and Ogura, M. 1996. Metabolism of lysine, threonine, and leucine in growing rats on gluten or zein diets at various dietary protein levels. Biosci. Biotech. Biochem., 60:1580.
  10. Kim, C. H., Sugahara, K. and Tanaka, H. 1998. Utilization of amino acid carbons in growing rats fed on the zein diets supplemented with graded levels of lysine. Anim. Sci. Technol.(Jpn), 69: 1004.
  11. Kumuta U. S. and Harper, A. E. 1962. Amino acid imbalance and balance. Ⅸ. Effect of amino acid imbalance on blood amino acid pattern. Proc. Soc. Exptl. Biol. Med., 110:512.
  12. Leung, P. M. B. and Rogers, Q. R. 1987. The effect of amino acids and protein on dietary choice.(Y. Kawamura and M. R., Kare. eds), pp. 560. Marcel Dekker, New York, NY.
  13. Meliza, L. L., Leung, P. M. B. and Rogers, Q. R. 1981. Effect of anterior prepyriform and medial amygdaloid lesions on acquisition of taste avoidance and reseponse to dietary amino acid imbalance. Physiol. Behav., 26:1031. https://doi.org/10.1016/0031-9384(81)90205-5
  14. Mercer, L. R., Dodds, S. J., Schweisthal, M. R. and Dunn, J. D. 1989. Brain histidine and food intake in rats fed diets deficient in single amino acids. J. Nutr. 119:66-74. https://doi.org/10.1093/jn/119.1.66
  15. Michael, W. S. and Bernstein, I. L. 1994. c-Fos induction in response to a conditioned stimulus after single trial taste aversion learning. Brain rearch, 636:202.
  16. NRC,‘Nutrient requirements of laboratory animal’, National Academy of Science -National Research Council, Nutrient Requirements of Domestic Animals, No. 10, 1974, p. 84.
  17. Peng, Y. 1979. Studies on the severity of various amino acid imbalances in young male rat. J. Nutr., 109:1916.
  18. Rogers, Q. R. and Leung, P. M. B. 1973. The influency of amino acids on the neuroregulation of food intake. Fed. Proc., Fed. Am. Soc. Exp. Biol., 32:1709.
  19. Said, A. K. and Hegsted, D. M. 1970. Response of adult rats to low dietary levels of essential amino acids. J. Nutr., 100:1363.
  20. Sheng, M. and Greenberg, M. E. 1990. The regulation and function of c-fos and other immuniate early genes in the nervous system. Neuron, 477.
  21. SAS Institute Inc. 1985. SAS user's guide. Verson 5 ed. Cary, NC.
  22. Sheiner, J. B., Morris, P. and Anderson, G. H. 1985. Foodintake suppression by histidine. Phar- macol. Biochem. Behav. 23:721-726. https://doi.org/10.1016/0091-3057(85)90061-9
  23. Sugahara, K., Shimoyama Y., Kato, H. and Kubo, T. 1999. Feeding a lysine-free diet decreases food intake without changes in hypothalamic mono- amine concentrations in growing chicks. Amin. Sci. J. 70:484-489.
  24. Tobin, G. and Boorman, K. N. 1979. Carotid or jugular amino acid infusions and food intake in the cockerel. Br. J. Nutr. 41:157-162. https://doi.org/10.1079/BJN19790022
  25. Torii, K., Mimura, T. and Yugari, Y. 1987. ‘Bio- chemical Mechanism of Umami taste perception and effect of dietary protein on the taste preference for amino acid and sodium chloride in rats.’(Y. Kumura and M.R. Kare, eds.), P. 513. Marcel Dekker, New York, NY.
  26. Wang, Y., Cummings, S. L. and Gietzen, D. W. 1996. Temporal-spatial pattern of c-fos expression in the rat brain in response to indispensable amino acid deficiency. I. The initial recognition phase. Molecular brain research. 40:27-34. https://doi.org/10.1016/0169-328X(96)00032-0
  27. Wang, Y., Cummings, S. L. and Gietzen, D. W. 1996. Temporal-spatial pattern of c-fos expression in the rat brain in response to indispensable amino acid deficiency. Ⅱ. The learned taste aversion. Molecular brain research. 40:35-41.
  28. 김창혁. 2002. Lysine 결핍에 따른 섭식반응과 뇌의 역할. 동물자원지. 44(2):221.
  29. 김창혁, 이영철. 1998. 사료단백질의 질적 변화에 따른 단기간의 섭식응답. 한영사지. 22(4):217- 228.
  30. 김창혁, 田中秀幸, 이영철. 1998. 소맥단백질에 lysine 첨가수준이 성장중인 흰쥐에서 $^{14}C$-lysine, $^{14}C$-threonine 및 $^{14}C$-leucine의 체내대사에 미치는 영향. 한영사지. 22(1):39-48.