• Title/Summary/Keyword: c-fos

Search Result 484, Processing Time 0.031 seconds

Effects of Samkieumgamibang Extract on Osteoclast Differentiation and Osteoblast Function (삼기음가미방(三氣飮加味方)이 파골세포의 분화 및 조골세포의 활성에 미치는 영향)

  • Park, Sun-Min;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.25 no.2
    • /
    • pp.23-42
    • /
    • 2012
  • Objectives: This study was performed to evaluate the effect of Samkieumgamibang (SKG) on osteoporosis. Methods: The osteoclastogenesis and gene expression were determined in RANKL-stimulated RAW 264.7 cell. And, osteoblastogenesis was also determined in rat calvarial cell. Results: SKG decreased the number of TRAP positive cell in osteoclast. It also decreased the expression of Cathepsin K, MMP-9, TRAP, c-fos, NAFTc1 and JNK1 in osteoclast. SKG increased the expression of iNOS in RANKL-stimulated in osteoclast. Otherwise, SKG inhibited TRAP activity in osteoclast. SKG increased cell proliferation, ALP activity, bone martix protein, collagen and nodule in osteoblast. Conclusions: It is concluded that SKG might decrease the bone resorption resulted from decrease of osteoclast differentiation and it's related gene expression. And, SKG might increase the bone formation resulted from increase of osteoblast function.

The Effects of Yanggyuksanhwa-tang Extracts on Cerebral Ischemia Following the MCA Occlusion in Rats. (흰쥐의 중대뇌동맥 결찰로 유발된 뇌허혈에서 양격산화탕(凉膈散火湯)이 신경세포에 미치는 효과)

  • Shin, Gil-cho;Oh, Kyung-hwan;Jeong, Sung-hyun;Lee, Won-chul
    • The Journal of the Society of Stroke on Korean Medicine
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • Objectives : Yanggyuksanhwa-tang is a prescription used for cerebral infarction clinically. Methods : According to previous research data, the effect of Yanggyuksanhwa-tang on cerebral infarction, we induced cerebral infarction by middle cerebral artery occlusion(MCAO) in rats, and the rats were administered Yanggyuksanhwa-tang. Results: Infarct area, infarct volume were measured, and the level of elements such as c-Fos, Bax and caspase-3 in penumbra of infarct were expressed by immunohistochemical staining. Conclusion : Yanggyuksanhwa-tang showed neuroprotective effect through preventing neuronal cell apoptosis.

  • PDF

The Effects of Bee Venom Therapy on Melanoma of C57BL Mouse (봉독약침(蜂毒藥鍼)이 C57BL mouse의 흑색종(黑色腫)에 미치는 영향)

  • Oh, Gi-Nam;Lee, Jae-Dong;Park, Dong-seok
    • Journal of Acupuncture Research
    • /
    • v.19 no.2
    • /
    • pp.78-91
    • /
    • 2002
  • Objective : This study was designed to investigate the anti-cancer effects of bee venom on melanoma in C57BL mice. Materials and Methods : For the induction of melanoma, C57BL mice were treated by DMBA(7, 12-dimethylbenz[a]anthracene). Each group of C57BL mouse was treated with DMBA $50{\mu}g$, $75{\mu}g$, $100{\mu}g$ respectively once a week for 15 weeks. Tumor generation in each group of 10 mice was observed. Cumulative curves were showed in the density and frequency of skin tumor generation. To know the effects of pre-treatment of bee venom on tumor generation by DMBA treatment(frequency of tumor generation), Each group of C57BL mouse was pretreated and treated with bee venom $5{\mu}{\ell}$, $25{\mu}{\ell}$, $50{\mu}{\ell}$ respectively once a week for 3 weeks, whereafter each mouse was treated with DMBA $100{\mu}g$ once a week for 15 weeks. Results and Conclusion (1) There was chemotherapeutic effect, but not chemopreventive effect. (2) Cpp32 activity was increased by $50{\mu}{\ell}$ bee venom treatment. (3) Bee venom treatment inhibited expression of cell-cycle regulating, growth-promoting genes such as c-Jun, c-Fos, and Cyclin Dl, and increased tumor suppressors p53 and p21/Wafl. (4) Bee venom treatment activated expression of a representative apoptosis-inducing gene Bax.

  • PDF

Negative regulators in RANKL-induced osteoclastogenesis

  • Lee, Jun-Won;Kim, Kab-Sun;Kim, Nack-Sung
    • International Journal of Oral Biology
    • /
    • v.32 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL) induces osteoclast formation from hematopoietic cells via up-regulation of positive regulators, including $NF-{\kappa}B$, c-Fos, microphthalmia transcription factor (Mitf), PU.1, and nuclear factor of activated T cells (NFAT) c1. In addition to the positive regulation by these transcription factors, RANKL appears to regulate negative regulators such as MafB and inhibitors of differentiation (Ids). Ids and MafB are abundantly expressed in osteoclast precursors, bone marrowderived monocyte/macrophage lineage cells (BMMs). Expression levels of these genes are significantly reduced by RANKL during osteoclastogenesis. Overexpression of these genes in BMMs inhibits the formation of tartarate-resistant acid phosphatase (TRAP)-positive multinuclear osteoclasts by down-regulation of NFATc1 and osteoclast-associated receptor (OSCAR), which are important for osteoclast differentiation. Furthermore, reduced expression of these genes enhances osteoclastogenesis and increases expression of NFATc1 and OSCAR. Taken together, RANKL induces osteoclastogenesis via up-regulation of positive regulators as well as down-regulation of negative regulators.

Gonadotropins : Basic View and Gene Expression (성선자극호르몬 : 유전자 발현에 대한 고찰)

  • Yukio Kato;Koichiro Gen;;Takako Kato
    • Korean Journal of Animal Reproduction
    • /
    • v.19 no.1
    • /
    • pp.15-34
    • /
    • 1995
  • 1970년말부터 뇌하수체 성선자극호르몬(gonadotropic hormone ; GTH)의 유전자 구조(FSH$\beta$, LH$\beta$ 및 공동의 $\alpha$쇄)가 다양한 종에서 밝혀지기 시작하였으나 이러한 유전자의 조직/세포 특이적 분비양식과 세포외 신호에 의한 조절양식은 정확히 밝혀져 있지 않다. 그러나 최근 들어 형질전환 맞추스 제작기법에 의해 $\alpha$쇄 유전자 상류에 세포특이적 발현을 조절하는 특이부위가 존재함이 보고됨을 시작, FSH$\beta$ 및 LH$\beta$쇄 유전자발현을 조절하는 특이부위 또한 가까운 시기내 발견되리라 기대된다. 한편, 성선자극 호르몬 방출호르몬(GnRH), 스테로이드 호르몬 및 여러 결합단백질과 같은 세포의 신호는 각기 다른 신호전달체계를 통하여 GTH유전자 발현을 일으킨다. 또한 뇌하수체에서도 그 존재가 확인된 전사인자들 (cFos, cJun)과 미지의 인자들은 상호간에 다양한 이량체를 형성하여 유전자 발현을 조절하는 각 특이부위에 결합함으로써 전사단계에서의 다양한 제어가 존재함이 밝혀지고 있으며 이러한 유전자상의 특이발현영역과 세포의 신호별 전사인자에 관한 연구는 번식에 있어 중요한 성선자극호르몬에 관한 분자수준의 조절기전을 밝혀내리라 기대되어진다.

  • PDF

YAC tripeptide of epidermal growth factor promotes the proliferation of HaCaT keratinocytes through activation of EGFR

  • Yoo, Yeon Ho;Kim, Yu Ri;Kim, Min Seo;Lee, Kyoung-Jin;Park, Kyeong Han;Hahn, Jang-Hee
    • BMB Reports
    • /
    • v.47 no.10
    • /
    • pp.581-586
    • /
    • 2014
  • Epidermal growth factor (EGF) is known to play key roles in skin regeneration and wound-healing. Here, we demonstrate that Pep2-YAC, a tripeptide covering residues 29-31 in the B loop of EGF, promotes the proliferation of HaCaT keratinocytes with activity comparable to EGF. The treatment of HaCaT cells with Pep2-YAC induced phosphorylation, internalization, and degradation of EGFR and organization of signaling complexes, which consist of Grb2, Gab1, SHP2, and PI3K. In addition, it stimulated the phosphorylation of ERK1/2 at Thr 202/Tyr 204 and of Akt1 at Ser 473 and the nuclear translocation of EGFR, STAT3, c-Jun, and c-Fos. These results suggest that Pep2-YAC may be useful as a therapeutic agent for skin regeneration and wound-healing as an EGFR agonist.

DNA Methylation in Brain and Liver Tissues of Mice Infected with Scrapie Agent (스크래피에 감염된 마우스의 뇌 및 간조직에서의 DNA Methylation)

  • Choi, E.K.;Uyeno, S.;Ono, T.;Carp, R.I.;Kim, Y.S.
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.2
    • /
    • pp.183-192
    • /
    • 1998
  • DNA methylation degree in the several murine brain and liver genes of different ages and after scrapie infection have been examined by using methylation-sensitive restriction endonuclease digestion. We found that the methylation of c-fos and c-myc in the brain and liver was increased during the late fetal to one month postnatal developmental periods. However, those of the SGP-2, $S100{\beta}$, APP950, PrP, and APLP1 genes were decreased at the same periods. The comparison of the DNA methylation patterns between scrapie infected brains and controls demonstrated there is no significant difference in methylation degree of scrapie-infected brains. These observations indicate that DNA methylation might be importantly related to the aging process. The scrapie-infected murine brain was not significantly developed more senescent than the same age-controls did.

  • PDF

Transcriptional Profile and Cellular Effects on Time Course & Doses Treatment of Methylmercury using Human cDNA Microarray System

  • Kim, Youn-Jung;Yun, Hye-Jung;Kim, Eun-Young;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.176-176
    • /
    • 2003
  • Methylmercury is known to have devastating effects on the mammalian nervous system. When human neuroblastoma SH-SY5Y cells were treated with methylmercury at sublethal concentrations (6.25 uM), up-regulated genes (39) & down-regulated genes (19) were identified by human 8k cDNA microarray. These genes are related with microtubule process, signal transduction pathway and cell death (apoptosis), Apoptosis-associated genes, HSP70, CDK inhibitor 1, FOS-like antigen were up-regulated and microtubule related genes like villin and dynein down-regultaed. To confirm the presence of apoptosis in cultured SH-SY5Y cells treated 6.25 and 1 uM methylmercury, we applied Annexin V-FITC assay followed by flow cytometric measurements after 6 and 24h. Studies on transcriptional and molecular effect by methylmercury may provide an insight into the neurotoxic effects of methylmercury in human neuronal cells and a possibility to develop more efficient and exact monitoring system of heavy metals as ubiquitous environmental pollutants.

  • PDF

Berberine suppresses in vitro migration of human aortic smooth muscle cells through the inhibitions of MMP-2/9, u-PA, AP-1, and NF-κB

  • Liu, Su-Jian;Yin, Cai-Xia;Ding, Ming-Chao;Xia, Shao-You;Shen, Qin-Min;Wu, Ji-Dong
    • BMB Reports
    • /
    • v.47 no.7
    • /
    • pp.388-392
    • /
    • 2014
  • Berberine, a type of isoquinoline alkaloid isolated from Chinese medicinal herbs, has been reported to have various pharmacological activities. Studies have demonstrated that berberine has beneficial effects on vascular remodeling and alleviates restenosis after vascular injury. However, its mechanism of action on vascular smooth muscle cell migration is not fully understood. We therefore investigated the effect of berberine on human aortic smooth muscle cell (HASMC) migration. Boyden chamber assay was performed to show that berberine inhibited HASMC migration dose-dependently. Real-time PCR and Western blotting analyses showed that levels of matrix metalloproteinase (MMP)-2, MMP-9, and urokinase-type plasminogen activator (u-PA) were reduced by berberine at both the mRNA and protein levels. Western blotting assay further confirmed that activities of c-Fos, c-Jun, and NF-${\kappa}B$ were significantly attenuated. These results suggest that berberine effectively inhibited HASMC migration, possibly by down-regulating MMP-2, MMP-9, and u-PA; and interrupting AP-1 and NF-${\kappa}B$ mediated signaling pathways.