• Title/Summary/Keyword: c-BN films

Search Result 34, Processing Time 0.021 seconds

Evaporation Characteristics of Aluminum by Using Surface-treated Graphite Boat (표면처리된 흑연 보트를 이용한 알루미늄의 증발 특성)

  • Jeong, J.I.;Yang, J.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Resistive heating sources are widely used to prepare thin films by vapor deposition because they are cheap, and easy to install and handle in vacuum system. Graphite is one of materials used to make the resistive heating source, but until now only limited applications have been possible as it reacts easily with evaporating materials at high temperature. In this study, evaporation characteristics of aluminum have been investigated by using graphite boat thermally treated with BN powder. The employed graphite boat has been prepared by spray-coating BN power onto the cavity surface of the boat and thermal treatment with aluminum in vacuum at the temperature of more than $1400^{\circ}C$. The voltage-current characteristics as well as resistivity changes of the graphite boat have been investigated during aluminum evaporation according to the applied voltage and time. The evaporation aspect has been picturized during flash evaporation for 40 seconds based on the characterization results. The evaporation rate of the graphite boat has been compared with that of BN boat. The graphite boat showed some different characteristics compared with BN boat, in that the evaporation occurred at the last stage of flash evaporation. The film appearance according to the applied voltage has been compared, and also the reflectance of the resulting film has been investigated according to the film thickness. It has been found that the graphite boat thermally treated with BN powder can be used for aluminum evaporation without problem.

DMAB Effects in Electroless Ni Plating for Flexible Printed Circuit Board (DMAB첨가량에 따른 연성회로기판을 위한 무전해 Ni 도금박막에 관한 연구)

  • Kim, Hyung-Chul;Rha, Sa-Kyun;Lee, Youn-Seoung
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.632-638
    • /
    • 2014
  • We investigated the effects of DMAB (Borane dimethylamine complex, C2H10BN) in electroless Ni-B film with addition of DMAB as reducing agent for electroless Ni plating. The electroless Ni-B films were formed by electroless plating of near neutral pH (pH 6.5 and pH 7) at $50^{\circ}C$. The electroless plated Ni-B films were coated on screen printed Ag pattern/PET (polyethylene terephthalate). According to the increase of DMAB (from 0 to 1 mole), the deposition rate and the grain size of electroless Ni-B film increased and the boron (B) content also increased. In crystallinity of electroless Ni-B films, an amorphization reaction was enhanced in the formation of Ni-B film with an increasing content of DMAB; the Ni-B film with < 1 B at.% had a weak fcc structure with a nano crystalline size, and the Ni-B films with > 5 B at.% had an amorphous structure. In addition, the Ni-B film was selectively grown on the printed Ag paste layer without damage to the PET surface. From this result, we concluded that formation of electroless Ni-B film is possible by a neutral process (~green process) at a low temperature of $50^{\circ}C$.

Novel Synthesis and Nanocharacterization of Graphene and Related 2D Nanomaterials Formed by Surface Segregation

  • Fujita, Daisuke
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.60-60
    • /
    • 2015
  • Nanosheets of graphene and related 2D materials have attracted much attention due to excellent physical, chemical and mechanical properties. Single-layer graphene (SLG) was first synthesized by Blakely et al in 1974 [1]. Following his achievements, we initiated the growth and characterization of graphene and h-BN on metal substrates using surface segregation and precipitation in 1980s [2,3]. There are three important steps for nanosheet growth; surface segregation of dopants, surface reaction for monolayer phase, and subsequent 3-D growth (surface precipitation). Surface phase transition was clearly demonstrated on C-doped Ni(111) by in situ XPS at elevated temperatures [4]. The growth mode was clarified by inelastic background analysis [5]. The surface segregation approach has been applied to C-doped Pt(111) and Pd(111), and controllable growth of SLG has been demonstrated successfully [6]. Recently we proposed a promising method for producing SLG fully covering an entire substrate using Ni films deposited on graphite substrates [7]. A universal method for layer counting has been proposed [8]. In this paper, we will focus on the effect of competitive surface-site occupation between carbon and other surface-active impurities on the graphene growth. It is known that S is a typical impurity of metals and the most surface-active element. The surface sites shall be occupied by S through surface segregation. In the case of Ni(110), it is confirmed by AES and STM that the available surface sites is nearly occupied by S with a centered $2{\times}2$ arrangement. When Ni(110) is doped with C, surface segregation of C may be interfered by surface active elements like S. In this case, nanoscopic characterization has discovered a preferred directional growth of SLG, exhibiting a square-like shape (Fig. 1). Also the detailed characterization methodologies for graphene and h-BN nanosheets, including AFM, STM, KPFM, AES, HIM and XPS shall be discussed.

  • PDF

The effect of thermal anneal on luminescence and photovoltaic characteristics of B doped silicon-rich silicon-nitride thin films on n-type Si substrate

  • Seo, Se-Young;Kim, In-Yong;Hong, Seung-Hui;Kim, Kyung-Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.141-141
    • /
    • 2010
  • The effect of thermal anneal on the characteristics of structural properties and the enhancement of luminescence and photovoltaic (PV) characteristics of silicon-rich silicon-nitride films were investigated. By using an ultra high vacuum ion beam sputtering deposition, B-doped silicon-rich silicon-nitride (SRSN) thin films, with excess silicon content of 15 at. %, on P-doped (n-type) Si substrate was fabricated, sputtering a highly B doped Si wafer with a BN chip by N plasma. In order to examine the influence of thermal anneal, films were then annealed at different temperature up to $1100^{\circ}C$ under $N_2$ environment. Raman, X-ray diffraction, and X-ray photoemission spectroscopy did not show any reliable evidence of amorphous or crystalline Si clusters allowing us concluding that nearly no Si nano-cluster could be formed through the precipitation of excess Si from SRSN matrix during thermal anneal. Instead, results of Fourier transform infrared and X-ray photoemission spectroscopy clearly indicated that defective, amorphous Si-N matrix of films was changed to be well-ordered thanks to high temperature anneal. The measurement of spectral ellipsometry in UV-visible range was carried out and we found that the optical absorption edge of film was shifted to higher energy as the anneal temperature increased as the results of thermal anneal induced formation of $Si_3N_4$-like matrix. These are consistent with the observation that higher visible photoluminescence, which is likely due to the presence of Si-N bonds, from anneals at higher temperature. Based on these films, PV cells were fabricated by the formation of front/back metal electrodes. For all cells, typical I-V characteristic of p-n diode junction was observed. We also tried to measure PV properties using a solar-simulator and confirmed successful operation of PV devices. Carrier transport mechanism depending on anneal temperature and the implication of PV cells based on SRSN films were also discussed.

  • PDF