• Title/Summary/Keyword: c-BN

Search Result 196, Processing Time 0.019 seconds

Stress Analysis for Fiber Reinforced Composites under Indentation Contact Loading (압입접촉하중이 작용하는 섬유강화 복합재료의 응력해석)

  • Jang, Kyung-Soon;Kim, Tae-Woo;Kim, Chul;Woo, Sang-Kuk;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.238-244
    • /
    • 2008
  • Modeling and FEM analysis on Boron Nitride and/or Pyrolytic Carbon coating layers on SiC fibers under indentation contact loadings are investigated. Especially this study attempts to model the mechanical behavior of the SiC fibers with and without coatings. Tyranno S grade and Tyranno LoxM grade of SiC are selected for fiber and Boron Nitride and/or Pyrolytic Carbon as coating material. The modeling is performed by SiC fiber without coating layer, which includs single(BN or PyC) and double(BN-PyC or PyC-BN) coating layer. And then the analysis is performed by changing a type of coating layer, a type of fiber and coating sequence. In this study, the concepts of modeling and analysis techniques for optimum design of BN and PyC coating process on SiC fiber are shown. Results show that stresses are reduced when indentation contact loading applies on the material having lower elastic modulus.

The Electronic Structure and Stability of the Heterofullerene :C(60-2x)(BN)x

  • Yee, Kyeong-Ae;Yi, Hong-Suk;Lee, Sang-San;Kang, Sung-Kwon;Song, Jin-Soo;Seong, See-Yearl
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.494-498
    • /
    • 2003
  • The transition from aromatics to heteroaromatics is very attractive since it provides an extremely large structural variety, the chemical functionality as well as the possibilities for electronic tuning of the fullerene properties. A synthesis of heterofullerenes in macroscopic quantities is unknown however the spectrometric detection of $C_{59}B$ has been reported. The electronic structures of $C_{(60-2x)}(BN)_x$ systems, isoelectronic with $C_{60}$ have been explored by Extended Hukel, AM1 and ab initio methods. The polyhedral assembly energy are 7.7 kcal greater than $C_{60}$ when one B-N unit is substituted with C-C unit. The assembly energies are getting bigger if more B-N unit is introduced. We focus on HOMO-LUMO energy gap and the stability effects in $C_{(60-2x)}(BN)_x$ with different compositions of $(BN)_x$ moiety. The bonding properties of the substituent atoms were investigated in detail.

A Study on Fabrication of Semiconducting $BaTiO_3$ Ceramics at Lower Sintering Temperature (저온 소결에 의한 반도성 $BaTiO_3$ 세라믹스 제조에 관한 연구)

  • 김준수;김흥수;권오성;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.183-191
    • /
    • 1996
  • For the fabrication of semiconducting BaTiO3 ceramics at lower sintering temperature BN was selected as a sintering aid and the microsturcture of semiconducting BaTiO3 ceramics and PTCR characteristics by their microstructural changes were investigated. by adding BN to 0.1 mol% Sb2O3-doped BaTiO3 ceramics the sintering temperature showing semiconducting BaTiO3 ceramics was reduced by 16$0^{\circ}C$ from 130$0^{\circ}C$ to 114$0^{\circ}C$ and the specific resistivity ratio was increased as the amount of BN was increased.

  • PDF

Effect of Oxygen Addition on Residual Stress Formation of Cubic Boron Nitride Thin Films (입방정 질화붕소 박막의 잔류응력 형성에 미치는 산소 첨가 효과)

  • Jang, Hee-Yeon;Park, Jong-Keuk;Lee, Wook-Seong;Baik, Young-Joon;Lim, Dae-Soon;Jeong, Jeung-Hyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.2
    • /
    • pp.91-97
    • /
    • 2007
  • In this study we investigated the oxygen effect on the nucleation and its residual stress during unbalanced magnetron sputtering. Up to 0.5% in oxygen flow rate, cubic phase (c-BN) was dominated with extremely small fraction of Hexagonal phase (h-BN) of increasing trend with oxygen concentration, whereas hexagonal phase is dominated beyond 0.75% flow rate. Interestingly, the residual stress in cubic-phase-dominated films was substantially reduced with small amount of oxygen (${\sim}0.5%$) down to a low value comparable to the h-BN case. This may be because oxygen atoms break B-N $sp^3$ bonds and make B-O bonds more favorably, increasing $sp^2$ bonds preference, as revealed by FTIR and NEXAFS. It was confirmed by experimental facts that the threshold bias voltage for nucleation and growth of cubic phase were increased from -55 V to -70 V and from -50 V to -60 V respectively. The reduction of residual stress in O-added c-BN films is seemingly resulting from the microstructure of the films. The oxygen tends to increase slightly the amount of h-BN phase in the grain boundary of c-BN and the soft h-BN phase of 3D network including surrounding nano grains of cubic phase may relax the residual stress of cubic phase.

Barkhausen Noise Characteristics of 3Cr-1Mo Steel with Heat-treatment (열처리에 따른 3Cr-1Mo강의 Barkhausen noise 특성)

  • Nam, Young-Hyun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.4
    • /
    • pp.199-204
    • /
    • 2008
  • The destructive method is reliable and widely used for evaluating the properties of material but it is time-consuming and difficult to prepare specimens from in-service industrial facilities. In the present research, Barkhausen Noise (BN) has been used to evaluate changes of mechanical properties due to heat treatment condition. The BN voltage (rms voltage) was measured with grain size. The rms voltage of BN increased with the heat treatment temperature ($870{\sim}1000^{\circ}C$) because the grain size increased with the temperature. The rms voltage of BN decreased with various heat treatment processes, such as quenched, tempered and PWHT. The BN can be used for the nondestructive evaluation of the forged reactor vessels. and moreover, it may be effectively used in the field application.

Feasibility Evaluation of Micro Hole Drilling and the Material Properties of Si3N4/hBN Ceramic with hBN Contents (hBN의 첨가량에 따른 Si3N4/hBN 세라믹의 재료특성 및 마이크로 홀가공 유용성 평가)

  • Park, Kwi-Deuk;Go, Gun-Ho;Lee, Dong-Jin;Kim, Jin-Hyeong;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 2017
  • In this paper, $Si_3N_4/hBN$ ceramics with various hexagonal boron nitride (hBN) contents (0, 10, 20, or 30 wt%) were fabricated via spark plasma sintering (SPS) at $1500^{\circ}C$, 50MPa, and 10m holding time. The material properties such as the relative density, hardness, and fracture toughness were systematically evaluated according to the hBN content in the $Si_3N_4/hBN$ ceramics. The results show that relative density, hardness, and fracture toughness continuously decreased as the hBN content increased. In addition, peak-step drilling (with tool diameter $500{\mu}m$) was performed to observe the effects of hBN content in micro-hole shape and cutting force. A machined hole diameter of $510{\mu}m$ (entrance) and stable cutting force were obtained at 30 wt% hBN content. Consequently, $Si_3N_4/30wt%$ hBN ceramic is a feasible material upon which to apply semi-conductor components, and this study is very meaningful for determining correlations between material properties and machining performance.

Characterization and Synthesis of BN Fibers According to the Content of BN Nanopowder by Electrospinning Method (전기방사에 의한 질화붕소 나노분말의 함량에 따른 질화붕소 나노섬유 합성 및 특성 평가)

  • Lee, Jong Hyeok;Chun, Myoung Pyo;Hwang, Jin Ah;Jung, Young Geun;Chu, Jae Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.455-461
    • /
    • 2018
  • Boron nitride (BN) nanofibers were fabricated using BN nanoparticles (70 nm) by electrospinning. Morphologies such as the diameter and density of the BN nanofibers are strongly influenced by the viscosity and dispersion state of the precursor solution. In this study, the precursor solution was prepared by ball milling BN nanoparticles and polyvinylpyrrolidone (PVP, Mw~1,300,000) in ethanol, which was electrospun and then calcined to produce BN fibers. High-quality BN nanofibers were well fabricated at a BN concentration of 15 wt% with their diameters in the range of 500 nm to 800 nm; the viscosity of the precursor solution was $400mPa{\cdot}S$. The calcination of the as-electrospun BN fibers seemed to be completed by holding them at $350^{\circ}C$ for 2 h considering the TGA data. The morphologies and phases of the BN fibers were investigated by scanning electron microscopy (SEM) and X-ray diffractometry (XRD), respectively; Fourier transform infrared (FT-IR) was also used for structure analysis.

Improving Thermal Conductivity of Neutron Absorbing B4C/Al Composites by Introducing cBN Reinforcement (cBN 입자상 강화재 첨가에 따른 중성자 흡수용 B4C/Al 복합재의 열전도도 변화 연구)

  • Minwoo Kang;Donghyun Lee;Tae Gyu Lee;Junghwan Kim;Sang-Bok Lee;Hansang Kwon;Seungchan Cho
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.435-440
    • /
    • 2023
  • This study aimed to enhance the thermal conductivity of B4C/Al composite materials, commonly used in transport/storage containers for spent nuclear fuel, by incorporating both boron carbide (B4C) and cubic boron nitride(cBN) as reinforcing agents in an aluminum (Al) matrix. The composite materials were successfully manufactured through a stir casting process and practical neutron-absorbing materials were obtained by rolling the fabricated composite ingot. The evaluation of the thermal conductivity of the fabricated composites was carried out because thermal conductivity is critical for neutron absorbing materials. The thermal conductivity measurement results indicated an approximately 3% increase in thermal conductivity under the same volume fraction when compared to composite materials using only B4C particles. Through neutron absorption cross-sectional area calculations, it was confirmed that the neutron absorption capability decreased to a negligible level. Based on the findings of this study, new design approaches for neutron absorption materials are proposed, contributing to the development of high-performance transport/storage containers.