• Title/Summary/Keyword: bypass flow

Search Result 331, Processing Time 0.02 seconds

Aorticopulmonary Window: one case report (대동맥중격결손증[수술치험 1예])

  • 최영호
    • Journal of Chest Surgery
    • /
    • v.14 no.3
    • /
    • pp.302-306
    • /
    • 1981
  • Aorticopulmonary window is a rare anomaly among congenital heart disease. Various terms have been suggested including A-P window, A-P fenestration, fistula, aorticseptal defect etc. The defect lies usually between the left side of the ascending aorta and right wall of the pulmonary artery just anterior to the origin of the right main pulmonary artery. We have experienced one case of aorticopulmonary septal defect which was diagnosed as V5D with pulmonary hypertension in 1 4/12 year old, 7.2 Kg, male patient. Operation was done under the hypothermic cardiopulmonary bypass using 5t. Thomas cardioplegic solution. Vertical right ventriculotomy over the anterior wall of RVOT revealed no defect in the ventricular septum, and incision was extended up to the main pulmonary artery to find the source of massive regurgitation of blood through MPA. Finger tip compression of the aorticopulmanary window was replaced with Foley bag catheter balloon, and the $7{\times}10$ mm aorticoseptal defect located 15mm above the pulmonic valve was sutured continuously wih 3-0 nylon suture during azygos flow of cardiopulmonary cannula which was located distal to the window resulted massive air pumping systemically, and temporary reversal of pumping was tried to minimize cerebral air embolism. Remained procedure was done as usual, and pump off was smooth and uneventful. Postoperatively, patient was attacked frequent opistotonic seizure with no recovery sign mentally and p.hysically. Vital signs were gradually worsen with peripheral cyanosis and oliguria, and cardiac activity was arrested 1485 minutes after operation. Autopsy was performed to find the sutured window and massive edema of the brain.

  • PDF

Realistic Large Break Loss of Coolant Accident Mass and Energy Release and Containment Pressure and Temperature Analyses

  • Kwon, Young-Min;Song, Jin-Ho
    • Nuclear Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.229-239
    • /
    • 1997
  • To investigate the realistic behavior of mass and energy release and resultant containment response during large break Loss of Coolant accident (LOCA), analyses are performed for Yonggwang (YGN) 3&4 nuclear power plants by using a merged version of RELAP5/CONTEMPT4 computer code. Comparative analyses by using conservative design computer codes are also peformed. The break types analyzed are the double-ended guillotine breaks at the cold leg and hot leg. The design analysis resulted in containment peak pressure during post-blowdown phase for the cold leg break. However, the RELAP5/CONTEMPT4 analyses show that the containment pressure has a peak during blowdown phase, thereafter it decreases monotonously without the second port-blowdown peak. For the hot leg break, revised design analysis shows much lower pressure than that reported in YGN 3&4 final safety analysis report. The RELAP5/CONTEMPT4 analysis shoos similar trend and confirmed that the bypass flow through the broken loop steam generator during post-blowdown is negligibly small compared to that of cold leg break. The low pressure and temperature predicted tv realistic analysis presented in this paper suggest that the design analysis methodology contains substantial margin and it can be improved to provide benefit in investment protection, such as, relaxing plant technical specifications and reducing containment design pressure.

  • PDF

Performance Analysis of Turbofan Engine for Turbine Cooling Design (터빈 냉각설계를 위한 터보팬 엔진의 성능해석)

  • Kim, Chun-Taek;Rhee, Dong-Ho;Cha, Bong-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.27-31
    • /
    • 2012
  • Turbine inlet temperature is steadily increasing to achieve high specific thrust and efficiency of gas turbine engines. Turbine cooling technology is essential to increase turbine inlet temperature. For this study, a small or medium sized aircraft engine of 10,000 lbf class with the turbine inlet temperature of $1,400^{\circ}C$, the engine overall pressure ratio of 32.2, and the bypass ratio of 5 was set as the baseline model and its performance analysis was performed at the design point. The engine has the performance of 10,013 lbf thrust and the specific fuel consumption of 0.362 lbm/hr/lbf. The thrust and the specific fuel consumption of the baseline model were compared with those of similar class engines. Based on these results, the turbine design requirements were assigned. In addition, the parametric analysis of the engine, related to aerodynamic and cooling design of the high pressure turbine, was performed. Based on the baseline model engine, the influence of turbine inlet temperature, cooling flow ratio, and high pressure turbine efficiency variations on the engine performance was analyzed.

The Correlation between Cardiac Catheterization Data and Defect Size in Ventricular Septal Defect (심실중격결손증에서 술전 심도자검사치와 결손크기의 상관관계에 대한 연구)

  • 정상조
    • Journal of Chest Surgery
    • /
    • v.23 no.3
    • /
    • pp.430-437
    • /
    • 1990
  • We clinically evaluated 121 cases of ventricular septal defect which we operated from April, 1986 to December, 1989 at Inha General Hospital, Seong-Nam, Department of Thoracic and Cardiovascular Surgery, College of Medicine, Inha University. These patients were occupied 54.8% of all congenital heart diseases operated on its same period. Of the 121 patients, 63 patients were male[52.1%] and 58 patients were female[47.9i]. The two most common symptoms were frequent upper respiratory infection and dyspnea on exertion. By Kirklin s anatomical classification, type I constituted 34.7%, type II 61.98%, type III 0.03% and type IV not occupied. Associated cardiac anomalies were found in 34 cases, and PDA was most common associated anomaly, occupied in 22 cases. On the cardiac catheterization data, there were statistically significant correlation between VSD size[cm2 /BSAm2] and systolic pulmonary arterial pressure[sPAP], pulmonary to systemic flow ratio[Qp/Qs] & pulmonary to systemic pressure ratio[Pp/Ps] respectively, Type II [r=0.53, p<0.01] was more correlated than type I [r=0.49, p<0.05] between VSD size and Qp /Qs. We could not found the correlationship between age and Qp/Qs [Type I; r=0.16, Type II; r=-0.15] All cases were operated under cardiopulmonary bypass and 58 cases[46.3%] were operated through the right atrial approach, and 34 cases[28.1%] through the pulmonary arterial approach. Operative mortality rate was 4.13%[5 cases].

  • PDF

Potential of MHD in Improving the Performance of and Generating Power in Scramjets (MHD의 스크램제트 성능 개선과 전력 생산 잠재력)

  • Parent, Bernard;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.310-313
    • /
    • 2008
  • Magnetohydrodynamics (MHD) devices have received considerable attention in recent years as a means to either improve the propulsive characteristics of hypersonic cruise missiles or as a means to generate power at low cost in drag and weight aboard scramjet powered vehicles. Based on more complete physical models than previously used, it is here argued that the use of MHD is not valuable in improving the performance of hypersonic propulsion systems through prevention of boundary layer separation or power bypass. This is due to the inevitable high amount of Joule heating accompanying MHD flow control having considerable undesired adverse effects on the engine performance. On the other hand, preliminary estimates indicate that MHD is likely to succeed in generating high amounts of power with little additional drag to feed megawatt-class energy weapons on-board scramjet engines.

  • PDF

Hemorrhagic Moyamoya Disease : A Recent Update

  • Fujimura, Miki;Tominaga, Teiji
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.2
    • /
    • pp.136-143
    • /
    • 2019
  • Moyamoya disease (MMD) is a progressive cerebrovascular disease with unknown etiology, characterized by bilateral steno-occlusive changes at the terminal portion of the internal carotid artery and an abnormal vascular network formation at the base of the brain. MMD has an intrinsic nature to convert the vascular supply for the brain from internal carotid (IC) system to the external carotid (EC) system, as indicated by Suzuki's angiographic staging. Insufficiency of this 'IC-EC conversion system' could result not only in cerebral ischemia, but also in intracranial hemorrhage from inadequate collateral anastomosis, both of which represent the clinical manifestation of MMD. Surgical revascularization prevents cerebral ischemic attack by improving cerebral blood flow, and recent evidence further suggests that extracranial-intracranial bypass could powerfully reduce the risk of re-bleeding in MMD patients with posterior hemorrhage, who were known to have extremely high re-bleeding risk. Although the exact mechanism underlying the hemorrhagic presentation in MMD is undetermined, most recent angiographic analysis revealed the characteristic angio-architecture related to high re-bleeding risk, such as the extension and dilatation of choroidal collaterals and posterior cerebral artery involvement. We sought to update the current management strategy for hemorrhagic MMD, including the outcome of surgical revascularization for hemorrhagic MMD in our institute. Further investigations will clarify the optimal surgical strategy to prevent hemorrhagic manifestation in patients with MMD.

Diameter Evaluation for PHWR Pressure Tube Based on the Measured Data (측정 데이터 기반 중수로 압력관 직경평가 방법론 개발)

  • Jong Yeob Jung;Sunil Nijhawan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.27-35
    • /
    • 2023
  • Pressure tubes are the main components of PHWR core and serve as the pressure boundary of the primary heat transport system. However, because pressure tubes have changed their geometrical dimensions under the severe operating conditions of high temperature, high pressure and neutron irradiation according to the increase of operation time, all dimensional changes should be predicted to ensure that dimensions remain within the allowable design ranges during the operation. Among the deformations, the diameter expansion due to creep leads to the increase of bypass flow which may not contribute to the fuel cooling, the decrease of critical channel power and finally the deration of the power to maintain the operational safety margin. This study is focused on the modeling of the expansion of the pressure tube diameter based on the operating conditions and measured diameter data. The pressure tube diameter expansion was modeled using the neutron flux and temperature distributions of each fuel channel and each fuel bundle as well as the measured diameter data. Although the basic concept of the current modeling approach is simple, the diameter prediction results using the developed methodology showed very good agreement with the real data, compared to the existing methodology.

Hydration-induced rapid growth and regression after indirect revascularization of an anterior choroidal artery aneurysm associated with Moyamoya disease: A case report

  • Gi Yeop Lee;Byung-Kyu Cho;Sung Hwan Hwang;Haewon Roh;Jang Hun Kim
    • Journal of Cerebrovascular and Endovascular Neurosurgery
    • /
    • v.25 no.1
    • /
    • pp.75-80
    • /
    • 2023
  • The prevalence of aneurysm formation in adults with Moyamoya disease (MMD) is higher than that in the general population. The treatment strategy is often individualized based on the patient's disease characteristics. A 22-year-old man was diagnosed with MMD after presenting a small thalamic intracerebral and subarachnoid hemorrhage in the quadrigeminal cistern. Cerebral angiography revealed a small aneurysm (2.42 mm) in the left anterior choroidal artery. Since the hemodynamics in the left hemisphere was compromised, an indirect bypass surgery was performed. The patient's condition deteriorated postoperatively because of poor perfusion of the internal carotid artery, and massive hydration was required. During neurocritical care, the aneurysm increased in size (5.33 mm). An observation strategy was adopted because of the distal aneurysmal location and the high risk involved. Subsequently, the patient recovered, and newly developed collateral flow appeared from the external carotid artery. Additionally, a dramatic size reduction of the aneurysm (1.51 mm) was noticed. Our case suggests that MMD-related dissecting aneurysms on a distal cerebral artery, which present a high risk of embolization, could be managed by indirectly reducing the hemodynamic burden. Massive hydration in such cases should be avoided or balanced to avoid the risk of rapid growth and aneurysm rupture.

Perfusion Techniques Using the Modified Isolated Working Rat Heart Model (흰쥐의 심장을 이용한 Modified Isolated Working Heart Perfusion Technique)

  • Lee, Chong-Kook;Choi, Hyeong-Ho
    • Journal of Chest Surgery
    • /
    • v.13 no.4
    • /
    • pp.338-345
    • /
    • 1980
  • We have modified an isolated perfusion rat heart model of cardiopulmonary bypass, with which we are able to screen the effects of various cardioplegic solutions and hypothermia upon the ability of the heart to survivie during and recover from period of ischemic arrest. The modified experimental model was differed from the original as follow : a heat coil chamber of atrial and aortic reservoir provided temperature control, and the perfusate was gassed with each pure oxygen and pure carbon dioxide in 95:5 ratio. The Langendorff perfusion was initiated for a 10 minute period by introducing perfusate at $37^{\circ}C.$ into the aorta from the aortic reservoir located 100 cm above the heart. The isolated perfused working rat heart model was a left heart preparation in which oxygenated perfusion medium (at $37^{\circ}C.$) entered the cannulated left atrium at a pressure of 20 cm $H_{2}O$ and was passed to the ventricle, from which it was sponeously elected(no electrical pacing) via an aortic cannula, against a hydrostatic pressure of 100cm $H_{2}O$. during this working period various indices of cardiac functin were measured. The cardiac functions were stable for over 3 hour with perfusion of Krebs-Henseleit bicarbonate buffer solution containing only glucose (11.1 mM/L). The percentage of cardiac functins were maintained about 94% on heart rate, 80.6% on peak aortic pressure, 87.7% on coronary flow and 76.3% on aortic flow rate after 3 hour of working heart perfusion at a pressure of 20 cm $H_{2}O$. We believe this preparation to be a good biochemical model for the human heart which offers many advantages including economic, speed of preparation, reproducibility, and the ability to handle large numbers.

  • PDF

AN EXPERIMENTAL STUDY WITH SNUF AND VALIDATION OF THE MARS CODE FOR A DVI LINE BREAK LOCA IN THE APR1400

  • Lee, Keo-Hyoung;Bae, Byoung-Uhn;Kim, Yong-Soo;Yun, Byong-Jo;Chun, Ji-Han;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.691-708
    • /
    • 2009
  • In order to analyze thermal hydraulic phenomena during a DVI (Direct Vessel Injection) line break LOCA (Loss-of-Coolant Accident) in the APR1400 (Advanced Power Reactor 1400 MWe), we performed experimental studies with the SNUF (Seoul National University Facility), a reduced-height and reduce-pressure integral test loop with a scaled down APR1400. We performed experiments dealing with eight test cases under varied tests. As a result of the experiment, the primary system pressure, the coolant temperature, and the occurrence time of the downcomer seal clearing were affected significantly by the thermal power in the core and the SI flow rate. The break area played a dominant role in the vent of the steam. For our analytical investigation, we used the MARS code for simulation of the experiments to validate the calculation capability of the code. The results of the analysis showed good and sufficient agreement with the results of the experiment. However, the analysis revealed a weak capability in predicting the bypass flow of the SI water toward the broken DVI line, and it was insufficient to simulate the streamline contraction in the broken side. We, hence, need to improve the MARS code.