• Title/Summary/Keyword: butyrate metabolism

Search Result 36, Processing Time 0.02 seconds

Effect of feeding a by-product feed-based silage on nutrients intake, apparent digestibility, and nitrogen balance in sheep

  • Seok, J.S.;Kim, Y.I.;Lee, Y.H.;Choi, D.Y.;Kwak, W.S.
    • Journal of Animal Science and Technology
    • /
    • v.58 no.2
    • /
    • pp.9.1-9.5
    • /
    • 2016
  • Background: Literature is lacking on the effects of feeding by-product feed (BF)-based silage on rumen fermentation parameters, nutrient digestion and nitrogen (N) retention in sheep. Therefore, this study was conducted to determine the effect of replacing rye straw with BF-based silage as a roughage source on ruminal parameters, total-tract apparent nutrient digestibility, and N balance in sheep. Methods: The by-product feed silage was composed of spent mushroom substrate (SMS) (45 %), recycled poultry bedding (RPB) (21 %), rye straw (11 %), rice bran (10.8 %), corn taffy residue (10 %), protected fat (1.0 %), bentonite (0.6 %), and mixed microbial additive (0.6 %). Six sheep were assigned randomly to either the control (concentrate mix + rye straw) or a treatment diet (concentrate mix + BF-based silage). Results: Compared with the control diet, feeding a BF-based silage diet resulted in similar ruminal characteristics (pH, acetate, propionate, and butyrate concentrations, and acetate: propionate ratio), higher (p < 0.05) ruminal NH3-N, higher (p < 0.05) ether extract digestibility, similar crude protein digestibility, lower (p < 0.05) dry matter, fiber, and crude ash digestibilities, and higher (p < 0.05) N retention (g/d) Conclusion: The BF-based silage showed similar energy value, higher protein metabolism and utilization, and lower fiber digestion in sheep compared to the control diet containing rye straw.

Novel GPR43 Agonists Exert an Anti-Inflammatory Effect in a Colitis Model

  • Park, Bi-Oh;Kang, Jong Soon;Paudel, Suresh;Park, Sung Goo;Park, Byoung Chul;Han, Sang-Bae;Kwak, Young-Shin;Kim, Jeong-Hoon;Kim, Sunhong
    • Biomolecules & Therapeutics
    • /
    • v.30 no.1
    • /
    • pp.48-54
    • /
    • 2022
  • GPR43 (also known as FFAR2), a metabolite-sensing G-protein-coupled receptor stimulated by short-chain fatty acid (SCFA) ligands is involved in innate immunity and metabolism. GPR43 couples with Gαi/o and Gαq/11 heterotrimeric proteins and is capable of decreasing cyclic AMP and inducing Ca2+ flux. The GPR43 receptor has additionally been shown to bind β-arrestin 2 and inhibit inflammatory pathways, such as NF-κB. However, GPR43 shares the same ligands as GPR41, including acetate, propionate, and butyrate, and determination of its precise functions in association with endogenous ligands, such as SCFAs alone, therefore remains a considerable challenge. In this study, we generated novel synthetic agonists that display allosteric modulatory effects on GPR43 and downregulate NF-κB activity. In particular, the potency of compound 187 was significantly superior to that of pre-existing compounds in vitro. However, in the colitis model in vivo, compound 110 induced more potent attenuation of inflammation. These novel allosteric agonists of GPR43 clearly display anti-inflammatory potential, supporting their clinical utility as therapeutic drugs.

Performance and Metabolism of Calves Fed Starter Feed Containing Sugarcane Molasses or Glucose Syrup as a Replacement for Corn

  • Oltramari, C.E.;Napoles, G.G.O.;De Paula, M.R.;Silva, J.T.;Gallo, M.P.C.;Pasetti, M.H.O.;Bittar, C.M.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.971-978
    • /
    • 2016
  • The aim of this study was to evaluate the effect of replacing corn grain for sugar cane molasses (MO) or glucose syrup (GS) in the starter concentrate on performance and metabolism of dairy calves. Thirty-six individually housed Holstein male calves were blocked according to weight and date of birth and assigned to one of the starter feed treatments, during an 8 week study: i) starter containing 65% corn with no MO or GS (0MO); ii) starter containing 60% corn and 5% MO (5MO); iii) starter containing 55% corn and 10% MO (10MO); and iv) starter containing 60% corn and 5% GS (5GS). Animals received 4 L of milk replacer daily (20 crude protein, 16 ether extract, 12.5% solids), divided in two meals (0700 and 1700 h). Starter and water were provided ad libitum. Starter intake and fecal score were monitored daily until animals were eight weeks old. Body weight and measurements (withers height, hip width and heart girth) were measured weekly before the morning feeding. From the second week of age, blood samples were collected weekly, 2 h after the morning feeding, for glucose, ${\beta}$-hydroxybutyrate and lactate determination. Ruminal fluid was collected at 4, 6, and 8 weeks of age using an oro-ruminal probe and a suction pump for determination of pH and short-chain fatty acids (SCFA). At the end of the eighth week, animals were harvested to evaluate development of the proximal digestive tract. The composition of the starter did not affect (p>0.05) concentrate intake, weight gain, fecal score, blood parameters, and rumen development. However, treatment 5MO showed higher (p<0.05) total concentration of SCFAs, acetate and propionate than 0MO, and these treatments did not differ from 10MO and 5GS (p>0.05). Thus, it can be concluded that the replacement of corn by 5% or 10% sugar cane molasses or 5% GS on starter concentrate did not impact performance, however it has some positive effects on rumen fermentation which may be beneficial for calves with a developing rumen.

Effect of Dietary Supplementation of Sodium Salt of Isobutyric Acid on Ruminal Fermentation and Nutrient Utilization in a Wheat Straw Based Low Protein Diet Fed to Crossbred Cattle

  • Misra, A.K.;Thakur, S.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.4
    • /
    • pp.479-484
    • /
    • 2001
  • The effect of dietary supplementation of sodium salt of isobutyric acid in low protein (10% CP) wheat straw based diet on nutrient utilization and rumen fermentation was studied in ruminally fistulated male crossbred cattle. The study included a 7 day metabolism and a 3 day rumen fermentation trials. The cattle were distributed into two equal groups of 4 each. The animals of control group were fed a basal diet consisting of wheat straw, concentrate mixture and green maize fodder in 40:40:20 proportion whereas branched chain volatile fatty acid (BCFA) supplemented group received a basal diet + isobutyric acid at 0.75 percent of basal diet. The duration of study was 36 days. The feed intake between experimental groups did not differ significantly and the average total DMI (% BW) was 2.01 and $2.28kg\;day^{-1}$ in control and BCFA supplemented diets. The dietary supplementation of BCFA improved (p<0.05) the DM, OM, NDF and cellulose digestibility by 4.46, 6.63, 10.57 and 11.31 per cent over those fed control diet. The total N retention on BCFA supplementation was improved (p<0.01) due to decreased (p<0.05) urinary N excretion. The concentrations of ruminal total N was 37.07 and $34.77mg\;100ml^{-1}$ in control and BCFA fed groups, respectively. Dietary supplementation BCFA significantly (p<0.01) reduced the ruminal ammonia N concentration as compared to control and the mean values ($mg\;100ml^{-1}$) were 13.18 and 9.42 in control and BCFA fed groups. The total VFA concentration was higher (p<0.01) in BCFA supplemented group (101.14 mM) than the control (93.05 mM). Among the VFAs, the molar proportion of acetate was higher (p<0.01) in BCFA supplemented group (71.07 mM) as compared to control (64.98 mM). However, the concentration of propionate and butyrate remained unchanged. Amino acids composition of bacterial hydrolysates was similar in both the groups. Ruminal outflow rate of liquid digesta was higher (p<0.01) in BCFA fed group ($67.56l\;day^{-1}$) than control ($52.73l\;day^{-1}$). It is concluded that the dietary supplementation of Na-salt of isobutyric acid in low protein diet improved the nutrient utilization and ruminal fermentation characteristics.

SOME PHYSIOLOGICAL STUDIES ON THE UTILIZATION OF ORGANIC SUBSTRATES BY EUGLENA GRACILIS VAR. BACILLA 10616 IN LIGHT AND IN DARKNESS ("유-그레나"의 명암배양에 따르는 유기질의 이용과 호흡 및 생장에 대하여)

  • Lee, Min-Jai
    • Journal of Plant Biology
    • /
    • v.2 no.1
    • /
    • pp.1-12
    • /
    • 1959
  • 1) The comparative studies of the quantitative measurement of growth characteristics and utilization of substrates by Euglena gracilis var. bacilla 10616 in the light and in darkness have been carried out. Eodogenous respiration, effect of respiratory inhibitors and responses to the added substrates for the exogenous respiration are also investigated. 2) All cultures are grown in the open air under the continuous illumination of fluorescent light of 3500 lux at room termperature, the growth rate of the culture in the basal medium added 0.5% lactate is found to be the highest. The growth rate decreases successively for the cultures of 0.5% sucinate, 0.5% Na-acetate, 0.5% malate, and control. There is no growth in the basal meidum added 0.5% butyrate and 0.5% hydroquinone. The similar results are obtained for the mentioned cultures in the darkness. However, the growth rate in basal medium added 0.5% glucose and 0.5% sucrose does seem to increase in the darkness unlike the illumination. 3) The endogenous rate of respiration for the organism cultured photosynthetically is about 12.94ul 02/mg/hr, in basal medium and the respiratory quotient is about 0.84. The rate is decreased by starvations to 6.5ul 02/mg/hr, about to a half, but the respiratory quotient does net change. 4) The oxygen consomption during initial 2 hours in suspending solution ranging from pH 4.5 to pH 9.3 is highest at pH 4.5 in which the algae had grown, at pH 5.5 and at pH 6.9. 5) Endogenous respiration of the cells is strongly inhibited by 0.1M of potassium cyanide, malomic acid, sodium fluoride and iodo-acetic acid. It is also strongly inhibited by 0.01M of potassium cyanide. 6) The respiratory response to added substrates for the exogenous respiration in the organism is coincided with the rate in the basal medium added the substrate in light and in darkness, whether the cells are fed or starved. 7) According to the results of this study, there seems to be the flexibility of the interconversion between photosynthesis and chemosynthesis, heterotropic mode of metabolism, in Euglena gracilis var. bacillaris, and that this organism utilizes the lactate most. It also may be suggested that the enayme systems linked in the each steps of Embden-Myerhof-Parnas path way and TCA cycle seem to exist in this organism.

  • PDF

Ruminal pH pattern, fermentation characteristics and related bacteria in response to dietary live yeast (Saccharomyces cerevisiae) supplementation in beef cattle

  • Zhang, Xiangfei;Dong, Xianwen;Wanapat, Metha;Shah, Ali Mujtaba;Luo, Xiaolin;Peng, Quanhui;Kang, Kun;Hu, Rui;Guan, Jiuqiang;Wang, Zhisheng
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.184-195
    • /
    • 2022
  • Objective: In this study we aimed to evaluate the effect of dietary live yeast supplementation on ruminal pH pattern, fermentation characteristics and associated bacteria in beef cattle. Methods: This work comprised of in vitro and in vivo experiments. In vitro fermentation was conducted by incubating 0%, 0.05%, 0.075%, 0.1%, 0.125%, and 0.15% active dried yeast (Saccharomyces cerevisiae, ADY) with total mixed ration substrate to determine its dose effect. According to in vitro results, 0.1% ADY inclusion level was assigned in in vivo study for continuously monitoring ruminal fermentation characteristics and microbes. Six ruminally cannulated steers were randomly assigned to 2 treatments (Control and ADY supplementation) as two-period crossover design (30-day). Blood samples were harvested before-feeding and rumen fluid was sampled at 0, 3, 6, 9, and 12 h post-feeding on 30 d. Results: After 24 h in vitro fermentation, pH and gas production were increased at 0.1% ADY where ammonia nitrogen and microbial crude protein also displayed lowest and peak values, respectively. Acetate, butyrate and total volatile fatty acids concentrations heightened with increasing ADY doses and plateaued at high levels, while acetate to propionate ratio was decreased accordingly. In in vivo study, ruminal pH was increased with ADY supplementation that also elevated acetate and propionate. Conversely, ADY reduced lactate level by dampening Streptococcus bovis and inducing greater Selenomonas ruminantium and Megasphaera elsdenii populations involved in lactate utilization. The serum urea nitrogen decreased, whereas glucose, albumin and total protein concentrations were increased with ADY supplementation. Conclusion: The results demonstrated dietary ADY improved ruminal fermentation dose-dependently. The ruminal lactate reduction through modification of lactate metabolic bacteria could be an important reason for rumen pH stabilization induced by ADY. ADY supplementation offered a complementary probiotics strategy in improving gluconeogenesis and nitrogen metabolism of beef cattle, potentially resulted from optimized rumen pH and fermentation.