• Title/Summary/Keyword: butterworth filters

Search Result 34, Processing Time 0.029 seconds

Displacements, damage measures and response spectra obtained from a synthetic accelerogram processed by causal and acausal Butterworth filters

  • Gundes Bakir, Pelin;Richard, J. Vaccaro
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.409-430
    • /
    • 2006
  • The aim of this study is to investigate the reliability of strong motion records processed by causal and acausal Butterworth filters in comparison to the results obtained from a synthetic accelerogram. For this purpose, the fault parallel component of the Bolu record of the Duzce earthquake is modeled with a sum of exponentially damped sinusoidal components. Noise-free velocities and displacements are then obtained by analytically integrating the synthetic acceleration model. The analytical velocity and displacement signals are used as a standard with which to judge the validity of the signals obtained by filtering with causal and acausal filters and numerically integrating the acceleration model. The results show that the acausal filters are clearly preferable to the causal filters due to the fact that the response spectra obtained from the acausal filters match the spectra obtained from the simulated accelerogram better than that obtained by causal filters. The response spectra are independent from the order of the filters and from the method of integration (whether analytical integration after a spline fit to the synthetic accelerogram or the trapezoidal rule). The response spectra are sensitive to the chosen corner frequency of both the causal and the acausal filters and also to the inclusion of the pads. Accurate prediction of the static residual displacement (SRD) is very important for structures traversing faults in the near-fault regions. The greatest adverse effect of the high pass filters is their removal of the SRD. However, the noise-free displacements obtained by double integrating the synthetic accelerogram analytically preserve the SRD. It is thus apparent that conventional high pass filters should not be used for processing near-fault strong-motion records although they can be reliably used for far-fault records if applied acausally. The ground motion parameters such as ARIAS intensity, HUSID plots, Housner spectral intensity and the duration of strong-motion are found to be insensitive to the causality of filters.

Distortion anaysis of digital filters for ECG signals (ECG 신호를 위한 디지탈 필터의 distortion 해석)

  • 남현도;안동준;이철희;장태규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.817-822
    • /
    • 1992
  • Distortion analysis of digital filters for the ECG signal processing is presented. Several band pass and band reject filters are designed for the analysis. Computer simulations are performed to compare the distortions of the Butterworth type filters and linear phase optimal fitters. The designed filters are applied to power line interference cancelling in ECG signals.

  • PDF

A Comparison of the Cascading Chebyshev BPF's skirt Characteristic and the Same Order BPF's (종속 Chebyshev BPF와 동일 차수 BPF의 skirt 특성 비교)

  • Shin, Seung-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.598-604
    • /
    • 2015
  • A Chebyshev filter is well known for having a sharp skirt characteristic and equi-ripple. On the other hand, a Butterworth filter has a smooth skirt characteristic and maximally flat ripple. This paper analyzes the skirt characteristics of the filters with the cascade connection. The paper deals with the Chebyshev BPF, Cascading Chebyshev BPF, Butterworth BPF, Cascading Butterworth*Chebyshev BPF. First of all, the paper designs the prototype analog LPF in order to analyze skirt characteristics of the BPFs. Then the paper does the frequency transformation into the BPFs and tests the BPFs with cascading them. As a result, the skirt characteristics of the Chebyshev BPF was the sharpest and those of the Cascading Chebyshev BPF, Butterworth BPF, Cascading Butterworth*Chebyshev BPF was superior in order. The validity of the paper was confirmed through minute measurements of test results.

A Study on the ripple cancellation using two cascading Chebyshev filters (Cascading Chebyshev filter를 이용한 리플 제거에 관한 연구)

  • Shin, Seung-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1700-1705
    • /
    • 2012
  • This study is focusing on ripple elimination in the band pass filter. There are generally two design methods in IIR filter design, which are a direct method and an indirect one. The indirect design method that designs the digital IIR LPF using the prototype analog LPF is applied to this study. A Butterworth filter and a Chebyshev filter are the typical prototype analog LPFs. This study shows characteristics of the digital IIR LPFs that are transformed from the prototype analog LPFs. The designed Butterworth and Chebyshev IIR LPFs are also designed as the band pass filters by frequency transformation in order to compare with the proposed cascading Chebyshev BPFs. This study shows frequency characteristics between the transformed IIR BPFs and the proposed cascading Chebyshev BPFs as well. The proposed cascading Chebyshev BPF is designed by cascading the different orders of Chebyshev BPFs. The aspect of the cascading filter is offsetting the ripples to descend them while the pass band ripples of the Chebyshev filter are ascending and vice versa. The designed cascading Chebyshev filter shows the flatness and the sharpness, which represent the advantages of Butterworth filter in the pass band and of Chebyshev filter in the transition band respectively. This result verifies the validity of the designed filter.

The Evaluation of Images with Various Filters in I-131 SPECT/CT (I-131 SPECT/CT에서 Ringing Artifact 감소를 위한 다양한 Filter값의 적용)

  • Kim, Ha Gyun;Kim, Soo Mee;Woo, Jae Ryong;Oh, So Won;Lee, Jae Sung;Kim, Yu Kyeong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.62-68
    • /
    • 2014
  • Purpose: After I-131 therapy, SPECT/CT is useful in identifying location of thyroid remnants and metastasis of thyroid cancers. An excessive uptake of thyroid leads to a ringing artifact in the SPECT images. The aim of this study is to investigate and suggest a proper post filters to remove ringing artifact and produce better image quality. Materials and Methods: A low-cost, customized thyroid-mimicking phantom, consisting of an acrylic bottle and a hollow sphere was used for SPECT/CT Discovery (GE Healthcare, USA). It was filled with I-131 solution. The ratio of hollow sphere to background were varied as 50:1, 200:1, 1000:1 and 4000:1. Acquired images were reconstructed by OSEM (2 iterations, 10 subsets) with and without Evolution (resolution recovery correction, GE). Three different post-filters were applied; Butterworth (cut off: 0.38 to 0.58 with intervals of 0.05), Hanning (cut off: 0.8 to 1 with intervals of 0.05) and Gaussian (FWHM: 3 to 5 with intervals of 0.5) filters. Contrast, background variability, air area variability, and full width half maximum (FWHM) were compared. Results: Higher contrasts were obtained from the SPECT images with Evolution than without Evolution. In the case of images without Evolution, image distortion such as star artifact was generated. For all sphere-to-background ratio, the Butterworth filter showed better constrasts and FWHMs than other two filters, but the ringing artifact was still generated in all studies except 50:1 and it was decreased as cutoff value was increased. The ringing artifact didn't appear with Hanning and Gaussian filters at all studies, however constrats and FWHMs with Gaussian was worse than Hanning filter. For the images having ringing artifacts, the background variability and air area variability were increased. Conclusion: In this study, we suggested that it is desirable to use Hanning filter when the ringing artifact is generated and to use Butterworth filter when ringing artifact is not generated in I-131 SPECT.

  • PDF

Time Domain Analysis of Digital Filters for Noise Cancelling in ECG Signals (ECG신호의 잡음 제거를 위한 디지탈 필터의 시간 영역 해석)

  • Nam, Hyun-Do;Ahn, Dong-Jun;Lee, Cheol-Heui
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.137-145
    • /
    • 1993
  • Time domain analysis as well as frequency domain analysis of signal conditioning filters is very useful for practical applications. Time domain analysis of digital filters for noise cancelling in ECG signals is presented. Several band pass and band reject filters are designed for the analysis. Computer simulations are performed to compare the distortions of the Butterworth type filters and linear phase optimal FIR filters which are widely used for ECG signal processing. Band reject filters are applied to power line interference cancelling in ECG signals.

  • PDF

Low-voltage current-mode filters using complementary current mirrors (상보형 전류미러를 이용한 저전압 전류모드 필터의 설계)

  • 안정철;최석우;윤창훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.11
    • /
    • pp.56-65
    • /
    • 1997
  • In this paper, a design of current-mode continuous-time filters for low voltage and high frequency applictions using complementary bipolar current mirror paris is presented. The proposed current-mode filters consist of simple bipolar current mirrors and capacitors and are quite suitable for monolithic integrtion. Since the design method of the proposed curent-mode filters is based on the integrator type of realization, it can be used for a wide range of applications. And the cutoff frequency of th efilters can be easily changed by the DC cntrolling current. As design examples, the 5th order butterworth filters are designed by cascade and leapfrog methods with tunable cutoff frequencies from 30MHz to 100MHz. The characteristics of the designed current mode filters are simulated and examined by SPICE using standard bipolar transistor parameters.

  • PDF

Design and Distortion Analysis of Digital Filters for ECG Waveforms Detection (EOG 신호의 파형 감지를 위한 디지털 필터의 설계 및 왜형 해석)

  • Nam, Hyun-Do;Ahn, Dong-Jun;Lee, Cheol-Heui
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.05
    • /
    • pp.70-73
    • /
    • 1993
  • Design as well as Distortion analysis of signal conditioning filters is very useful for practical applications. Distortion analysis of digital filters for wave forms detection in ECG signals is presented. Several band pass and band reject filters are designed for the analysis. Computer simulations are performed to compare the distortions of the Butterworth type filters and linear phase optimal FIR filters which are widely used for ECG signal processing.

  • PDF

The Design of Elliptic Function Bandpass Filter using Ceramic Coaxial Resonators (유전체 동축 공진기를 이용한 타원 함수 대역 통과 여파기의 설계)

  • 김정제;윤상원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.6
    • /
    • pp.805-814
    • /
    • 1999
  • In this paper, elliptic function bandpass filters using ceramic coaxial resonators are designed. Since elliptic function filters have better performance of frequency selectivity than those based on Butterworth or Chebyshev, therefore it is possible to make better use of limited frequency resources. Elliptic function bandpass filters using ceramic coaxial resonators are designed for reducing it's size, weight, cost and for easy manufacturing and tuning. From measurements, an accurate resonator model is obtained and the coupling coefficient values are extracted. Based on these results, elliptic function bandpass filters are designed. The experimental results have shown that the 8th order elliptic function filter of 959 MHz center frequency with 28 MHz bandwidth using coaxial ceramic resonators have about more tan 17 dB return loss, 5 dB insertion loss, more than 20 dB attenuation at $f_c\pm$5 MHz.

  • PDF

The Time-Domain characteristics of Elliptic Filter Functions (Elliptic 필터 함수의 시간영역측성에 대한 고찰)

  • 한병성;김형갑
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.5
    • /
    • pp.37-42
    • /
    • 1983
  • The elliptic functions have transmission zeros on the imaginary axis and exhibit equal ripples in the stopband as well as in the passband. As a consequence they can be made optimal in the sense that the transition band is minimal. However the time domain behaviors turned out to be inferior to those of Chebyshev and Butterworth responses. This paper investigates the unit step responses and impulse responses in order to analyze the effects of various parameters such as passband attenuation, stopband frequencies M. etc., The following are the prominent features. Step responses of elliptic filters rise faster and produce larger overshoots and undershoots with higher natural frequencies. In the case of even functions, the initial values are non-zero which decreases as $\omega$s increases. Unlike Butter-worth or Chebyshev cases the impulse responses start with nonzero valses which also decrease as $\omega$s or order of the function increases. Eight figures are included to illustrate above analysis.

  • PDF