• 제목/요약/키워드: butadiene composition

검색결과 37건 처리시간 0.025초

Analytical Method for Determination of Microstructure of SBR and SBR Content in Blended Rubber Composites Using Pyrolytic Technique

  • Eunji Chae;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • 제57권4호
    • /
    • pp.188-196
    • /
    • 2022
  • Styrene-butadiene rubber(SBR) is a copolymer of styrene and butadiene. It is composed of 1,2-unit, 1,4-unit, and styrene, and its properties are dependent on its microstructure. In general, rubber composites contain a single rubber or a blended rubber. Similarly, SBR is used by mixing with natural rubber(NR) and butadiene rubber(BR). The composition of a rubber article affects its physical and chemical properties. Herein, an analytical method for determining the microstructure of SBR using via pyrolysis is introduced. Pyrolysis-gas chromatography/mass spectrometry is widely used to analyze the microstructure of polymeric materials. The microstructure of SBR can be determined by analyzing the principal pyrolysis products formed from SBR, such as 4-vinylcyclohexene, styrene, 2-phenylpropene, 3-phenylcyclopentene, and 4-phenylcyclohexene. An analytical method for determining the composition of SBR/NR, SBR/BR, and SBR/NR/BR blends via pyrolysis is introduced. The composition of blended rubber can be determined by analyzing the principal pyrolysis products formed from each rubber component.

배합비에 의한 고무 블렌드의 물성변화 (Composition-Dependent Properties of Natural Rubber Blended with Butadiene Rubber)

  • 권기환;박문수
    • Elastomers and Composites
    • /
    • 제31권5호
    • /
    • pp.347-352
    • /
    • 1996
  • A natural rubber was blended with a butadiene rubber with different ratios. A natural rubber, along with three different blends, its ratio varying from 10 to 15 to 20 weight %, were prepared and tested. It was found that inclusion of the butadiene rubber increased cure time, compared to the natural rubber. It is speculated that increased free volume due to the inclusion of butadiene rubber contributed to this effect. Furthermore, inclusion of butadiene rubber led to increase hardness of a sphere, and as a result, the extent of rebound increased sharply.

  • PDF

Comparison of SBR/BR Blend Compound and ESBR Copolymer Having Same Butadiene Contents

  • Hwang, Kiwon;Lee, Jongyeop;Kim, Woong;Ahn, Byungkyu;Mun, Hyunsung;Yu, Eunho;Kim, Donghyuk;Ryu, Gyeongchan;Kim, Wonho
    • Elastomers and Composites
    • /
    • 제54권1호
    • /
    • pp.54-60
    • /
    • 2019
  • The rapid development of the automobile industry is an important factor that led to the dramatic development of synthetic rubber. The tread part of tire that comes in direct contact with the road surface is related to the service life of the tire. Rubber compounds used in tire treads are often blended with SBR (styrene-butadiene rubber) and BR (butadiene rubber) to satisfy physical property requirements. However, when two or more kinds of rubber are blended, phase separation and silica dispersion problems may occur due to non-uniform mixing of the rubber. Therefore, in this study, we synthesized an SBR copolymer with the same composition as that of a typical SBR/BR blend compound by controlling butadiene content during ESBR (emulsion styrene-butadiene rubber) synthesis. Subsequently, silica filled compounds were manufactured using the synthesized ESBR, and their mechanical properties, dynamic viscoelasticity, and crosslinking density were compared with those of the SBR/BR blended compound. When the content of butadiene was increased in the silica filled compound, the cure rate accelerated due to an increased number of allylic positions, which typically exhibit higher reactivity. However, the T-2 compound with increased butadiene content by synthesis less likely to show an increase in crosslink density due to poor silica dispersion. In addition, the T-3 compound containing high cis BR content showed high crosslink density due to its monosulfide crosslinking structure. Because of the phase separation, SBR/BR blend compounds were easily broken and showed similar $M_{100%}$ and $M_{300%}$ values as those of other compounds despite their high crosslink density. However, the developed blend showed excellent abrasion resistance due to the high cis-1,4 butadiene content and low rolling resistance due to the high crosslink density.

Preblending Effect of Biblends on Properties of the Carbon Black-Filled Rubber Compounds

  • Park, Sung-Seen
    • Macromolecular Research
    • /
    • 제9권1호
    • /
    • pp.37-44
    • /
    • 2001
  • A premixing effect for the properties of carbon black-filled rubber compounds was investigated using biblends of natural rubber (NR), styrene-butadiene rubber (SBR), and butadiene rubber (BR). Degree of mixing of the biblends was controlled by preblending time of 0.0, 2.5, and 5.0 min. Mooney viscosities of the compounds decreased by increasing the preblending time. Of three carbon black-filled compounds of NR/SBR, NR/BR, and SBR/BR compounds, only the SBR/BR blends showed a specific cure characteristics depending on the preblending time. For the bound rubber composition, the NR content was higher than SBR and BR. The difference in the rubber composition ratio of the bound rubber became smaller with increasing the preblending time. Physical properties of the vulcanizates such as hardness, modulus, tensile property, abrasion loss, and tans were also compared. Differences in properties of the compounds were discussed with miscibility of the dissimilar rubbers and degree of mixing.

  • PDF

이축 압출기를 이용한 혼련에서 삼성분계 블렌드의 상구조 형성과정 (Evolution of Phase Morphology During Compounding of Ternary Blends in a Twin Screw Extruder)

  • Kim, Hyungsu;Lee, Shi-Choon;D .Y. Yu;C. G. Gogos
    • 유변학
    • /
    • 제10권4호
    • /
    • pp.247-255
    • /
    • 1998
  • 이축 압출기에서 삼성분계 블렌드가 용융 혼련될 때 상구조의 형성과정에 대하여 연구하였다. 삼성분계 블렌드의 연속상은 polycarbonate(PC)로 고정하였고 나머지 분산상을 이루는 성분으로는 acrylonitrile-butadiene-styrene(ABS), methyl methacrylate-butadiene-ethyl acrylate(MBE), styrene-acrylonitrile(SAM) 공중합체, 그리고 poly(methyl methacrylate)(PMMA)를 사용하였다. 블렌드의 여러 가지 조성에 따라 최종 상구조는 현저한 차이를 보였고 특히 MBE와 PMMA의 경우는 각각 PC-SAN의 계면에 선택적으로 위치하였다. 삼성분계 고분자 블렌드의 상구조 형성과정은 성분간의 계면장력과 합체 현상의 상호 작용에 의하여 지배되었으며 합체의 정도는 계면에서의 점도에 의하여 민감하게 변화되었다.

  • PDF

Poly(methyl methacrylate)와 Poly(acrylonitrile butadiene styrene)와의 혼합에 의한 열분해속도에 관한 연구 (Kinetic Study on the Thermal Degradation of Poly(Methyl Methacrylate) and Poly(Acrylonitrile Butadiene Styrene) Mixtures)

  • 문덕주;김동건;설수덕
    • Elastomers and Composites
    • /
    • 제24권1호
    • /
    • pp.11-18
    • /
    • 1989
  • The thermal degradation of Poly(methyl methacrylate) (PMMA) and poly(acrylonitrile butadiene styrene)(ABS) terpolymer as well as their mixtures were carried out using the thermogravimetry and differential scanning calorimetry(DSC) in the stream of nitrogen and air with 50 ml/min at the various heating rate from 4 to $20^{\circ}C/min$ and temperature from 200 to $300^{\circ}C$ The values of activation energies of thermal degradation determined by TG and DSC in the various PMMA/ABS mixtures were $34{\sim}58Kcal/mol,\;35{\sim}54Kcal/mol$ in the stream of nitrogen. The values of activation energy of ABS20% mixture was appeared high in camparison with addition rule. According to increasing the composition of ABS, the temperatures of glass transition and initial decomposition temperature were increased. PMMA/ABS mixtures by the analysis of infrared spectrophotometer were decomposed by main chain scission in the stream of nitrogen.

  • PDF

Supercapacitive Properties of Polyaniline Electrode Electrodeposited on Carbon Nanotube/Acetonitrile-Butadiene Rubber as a Flexible Current Collector

  • Park, Jee-Hye;Kim, Sang-Hern;Ko, Jang-Myoun;Lee, Young-Gi;Kim, Kwang-Man
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권4호
    • /
    • pp.211-215
    • /
    • 2011
  • Flexible sheets consisting of acrylonitrile-butadiene rubber (NBR) and carbon nanotube (CNT) are newly prepared varying the composition (CNT 20-25 wt.%) for use as a current collector of supercapacitor electrodes. The as-prepared CNT/NBR is electrodeposited with aniline using potentiodynamic cyclic voltammetry to yield a polyaniline (PANI)/CNT/NBR composite electrode. It is confirmed that the electrical conductivity of CNT/NBR current collector can be enhanced as the content of CNT increases. Cyclic voltammetry result shows that the sample of PANI/CNT(25 wt.%)/NBR composite achieves a maximum specific capacitance ($134.9\;F\;g^{-1}$) at $5\;mV\;s^{-1}$. Such supercapacitor application is possibly originated from the synergistic effects consisting of higher polarity of nitrile groups in NBR, conducting pathway of CNT, and electroactive property of PANI.

Mechanical Properties of Styrene-Butadiene Rubber Reinforced with Hybrids of Chitosan and Bamboo Charcoal/Silica

  • Li, Xiang Xu;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • 제54권1호
    • /
    • pp.22-29
    • /
    • 2019
  • Chitosan-polyvinyl alcohol (PVA) -bamboo charcoal/silica (CS-PVA-BC/SI) hybrid fillers with compatibilized styrene-butadiene rubber (SBR) composites were fabricated by the interpenetrating polymer network (IPN) method. The structure and composition of the composite samples were characterized by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR). The viscoelastic behaviors of the rubber composites and their vulcanizates were explored using a rubber processing analyzer (RPA) in the rheometer, strain sweep and temperature sweep modes. The storage and loss moduli of SBR increased significantly with the incorporation of different hybrid fillers, which was attributed to the formation of an interphase between the hybrid fillers and rubber matrix, and the effective dispersion of the hybrid fillers. The mechanical properties (hardness, tensile strength, oxygen transmission rate, and swelling rate) of the composite samples were characterized in detail. From the results of the mechanical test, it was found that BC-CS-PVA0SBR had the best mechanical properties. Therefore, the BC-CS-PVA hybrid filler provided the best reinforcement effects for the SBR latex in this research.

유화중합의 모델연구 1. Pseudo-homopolymerization (Study on Model of Emulsion Polymeration 1. Pseudo-homopolymerization)

  • 박상보;서차수
    • 공업화학
    • /
    • 제9권2호
    • /
    • pp.294-299
    • /
    • 1998
  • 입자당 한 개 이상의 성장라디칼이 있는 일반계에서 근사적인 psedo-homopolymerization (PHP)방법의 신뢰성을 간접적으로 증명하기 위하여, 벌크중합의 Mayo-Lewis식이 Interval II 동안 유화중합의 순간공중합조성식으로부터 확률적으로 유도됨을 보였다. Ballard등에 의하여 제안된 유화공중합의 확장된 Smith-Ewart식으로부터 0-1계(입자당 1개 이하의 성장라디칼이 있는 계)에 대하여 완전해를 얻었다. 이 해를 사용하여 입자당 평균라디칼수와 순간공중합조성이 몇 분 이내에 정상상태에 도달함을 예측할 수 있었다. 따라서 0-1계에 국한하여 PHP근사방법의 신뢰성을 직접 증명할 수 있었다. 모델계산의 목적으로 Styrene-butadiene(St-Bu)과 Styrene-methyl methacrylate(St-MMA)계를 예로 들었다.

  • PDF

실리카와 카본블랙으로 보강된 SBR 고무 배합물의 특성에 보강제 조성비가 미치는 영향 (Influence of Filler Composition Ratio on Properties of Both Silica and Carbon Black-Filled Styrene-Butadiene Rubber Compounds)

  • 최성신
    • Elastomers and Composites
    • /
    • 제36권1호
    • /
    • pp.37-43
    • /
    • 2001
  • 실리카와 카본블랙으로 보강된 SBR 배합물의 가황 특성과 bound rubber 함량 그리고 가황물의 물성에 보강제의 조성비가 미치는 영향을 연구하였다. 고무 배합물의 보강제 총 함량은 80.0 phr 이다. Bound rubber 함량은 실리카 함랑비가 증가할수록 증가하였고 점도 역시 증가하였는데, 특히 실리카 함량이 60.0 phr 이상일 때는 점도의 증가폭이 두드러지게 높아졌다. 가황시간은 실리카 함량이 증가할수록 느려졌고 가황 속도도 느려졌다. 실리카 함량비가 증가할수록 델타 토크가 증가함에도 불구하고 모둘러스는 감소하는 경향을 보였다. $60^{\circ}C$에서의 tan ${\delta}$ 값은 실리카 함량이 증가할수록 감소하였다.

  • PDF