• Title/Summary/Keyword: business services cluster

Search Result 55, Processing Time 0.03 seconds

Draft Design of AI Services through Concept Extension of Connected Data Architecture (Connected Data Architecture 개념의 확장을 통한 AI 서비스 초안 설계)

  • Cha, ByungRae;Park, Sun;Oh, Su-Yeol;Kim, JongWon
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.30-36
    • /
    • 2018
  • Single domain model like DataLake framework is in spotlight because it can improve data efficiency and process data smarter in big data environment, where large scaled business system generates huge amount of data. In particular, efficient operation of network, storage, and computing resources in logical single domain model is very important for physically partitioned multi-site data process. Based on the advantages of Data Lake framework, we define and extend the concept of Connected Data Architecture and functions of DataLake framework for integrating multiple sites in various domains and managing the lifecycle of data. Also, we propose the design of CDA-based AI service and utilization scenarios in various application domain.

Re-Engineering of Educational Contexts in the Digital Transformation of Socio-Economic Interactions of Society

  • Tsekhmister Yaroslav;Tetiana Konovalova;Tsekhmister Bogdan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.135-141
    • /
    • 2024
  • The article examines the key constants of reengineering the modern educational cluster, associated with the processes of digital transformation of all spheres of modern socio-cultural space. The first constant is the strategic rethinking of the educational process organization and awareness of the new roles of all participants (tutors, applicants, controlling elements, etc.). The other constant involves practical re-design of the system of educational services, which consists in the reorientation from the traditional model of education functioning for society to the implementation of the educational format in the form of new projects (structural, target, business). Consequently, the purpose of the study is to highlight the attitudes relevant to the modern realities of information and technological support of education in the context of socio-economic interactions of society. The criteria for the reengineering of educational concepts and the structural organization of the educational sphere are defined. The modern world is going through a period of complete digital transformation of all spheres of public activity. The scientific intelligence notes that education is no exception in these processes, as the dependence of educational realities on information and computer technologies is now noted. The COVID-19 pandemic, for all its tragedy, was also a kind of trigger, clearly marking the new components that have become defined in the organization of the educational process. The conclusion is made that the use of digital technologies in the organization of the educational institution or in the organization of the educational process has become not an auxiliary element, but a dominant factor. Mobility, dynamism, interdisciplinarity, synergy - all these aspects are relevant for socio-economic interactions of society and should be provided by educational programs. The results of the study can be used in the reorganization processes of educational institutions and institutions. Further research requires aspects of the analysis of the foreign experience of reengineering in education, carried out taking into account digital transformations of modern sociocultural space.

Processes and Outcomes of Creative City Policies: Case Studies on UK-Tech City (창조도시정책의 추진과정과 성과에 대한 연구: 영국의 테크시티 정책을 중심으로)

  • Lee, Byung-min
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.597-615
    • /
    • 2016
  • Since 1997 the United Kingdom has pursued creative industry and creative city development in accordance with the New Labor Party policy, strengthening its cluster policy by assigning creative city policies to traditional manufacturing-oriented regions. Tech City in London, one of the most successful examples of digital clusters, is an area in which diverse ecosystems for venture business integration have been established, as the once barren space began to spontaneously develop. For this region, systematic linkages including universities, private companies, start-ups, and accelerators have been added, along with the UK government's active support system. As a result of this opportunity, the scale of the UK start-up ecosystem has significantly grown, the number of local companies has surged, and brand effect has greatly improved. Tech City is an example of a well-balanced combination of public effort and private governance, based on the region's historical background and its potential for growth. It is an effective coordination of public policy and private active investment, services, research, and education. The market platform for institutional technology and commercialization, and aggressive investment shares in the risk, have lead to its growth as a start-up and an innovative city. Britain's efforts to expand the nationwide cluster for the future-oriented digital economy is most noteworthy.

User-Perspective Issue Clustering Using Multi-Layered Two-Mode Network Analysis (다계층 이원 네트워크를 활용한 사용자 관점의 이슈 클러스터링)

  • Kim, Jieun;Kim, Namgyu;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.93-107
    • /
    • 2014
  • In this paper, we report what we have observed with regard to user-perspective issue clustering based on multi-layered two-mode network analysis. This work is significant in the context of data collection by companies about customer needs. Most companies have failed to uncover such needs for products or services properly in terms of demographic data such as age, income levels, and purchase history. Because of excessive reliance on limited internal data, most recommendation systems do not provide decision makers with appropriate business information for current business circumstances. However, part of the problem is the increasing regulation of personal data gathering and privacy. This makes demographic or transaction data collection more difficult, and is a significant hurdle for traditional recommendation approaches because these systems demand a great deal of personal data or transaction logs. Our motivation for presenting this paper to academia is our strong belief, and evidence, that most customers' requirements for products can be effectively and efficiently analyzed from unstructured textual data such as Internet news text. In order to derive users' requirements from textual data obtained online, the proposed approach in this paper attempts to construct double two-mode networks, such as a user-news network and news-issue network, and to integrate these into one quasi-network as the input for issue clustering. One of the contributions of this research is the development of a methodology utilizing enormous amounts of unstructured textual data for user-oriented issue clustering by leveraging existing text mining and social network analysis. In order to build multi-layered two-mode networks of news logs, we need some tools such as text mining and topic analysis. We used not only SAS Enterprise Miner 12.1, which provides a text miner module and cluster module for textual data analysis, but also NetMiner 4 for network visualization and analysis. Our approach for user-perspective issue clustering is composed of six main phases: crawling, topic analysis, access pattern analysis, network merging, network conversion, and clustering. In the first phase, we collect visit logs for news sites by crawler. After gathering unstructured news article data, the topic analysis phase extracts issues from each news article in order to build an article-news network. For simplicity, 100 topics are extracted from 13,652 articles. In the third phase, a user-article network is constructed with access patterns derived from web transaction logs. The double two-mode networks are then merged into a quasi-network of user-issue. Finally, in the user-oriented issue-clustering phase, we classify issues through structural equivalence, and compare these with the clustering results from statistical tools and network analysis. An experiment with a large dataset was performed to build a multi-layer two-mode network. After that, we compared the results of issue clustering from SAS with that of network analysis. The experimental dataset was from a web site ranking site, and the biggest portal site in Korea. The sample dataset contains 150 million transaction logs and 13,652 news articles of 5,000 panels over one year. User-article and article-issue networks are constructed and merged into a user-issue quasi-network using Netminer. Our issue-clustering results applied the Partitioning Around Medoids (PAM) algorithm and Multidimensional Scaling (MDS), and are consistent with the results from SAS clustering. In spite of extensive efforts to provide user information with recommendation systems, most projects are successful only when companies have sufficient data about users and transactions. Our proposed methodology, user-perspective issue clustering, can provide practical support to decision-making in companies because it enhances user-related data from unstructured textual data. To overcome the problem of insufficient data from traditional approaches, our methodology infers customers' real interests by utilizing web transaction logs. In addition, we suggest topic analysis and issue clustering as a practical means of issue identification.

Mobility Change around Neighborhood Parks and Green Spaces before and after the Outbreak of the COVID-19 Pandemic (COVID-19 발생 전·후 생활권 공원녹지 모빌리티 변화 분석)

  • Choi, Ga yoon;Kim, Yong gook;Kwon, Oh kyu;Yoo, Ye seul
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.4
    • /
    • pp.101-118
    • /
    • 2023
  • During the COVID-19 pandemic, the utilization rate of neighborhood parks and green spaces increased significantly, and the outbreak served as an opportunity to highlight the values and functions of neighborhood parks and green spaces for urban residents. This study aims to empirically analyze how citizens' movement and the use of neighborhood parks and green spaces changed before and after COVID-19 and examine the social and spatial characteristics that affected these changes. As a research method, first, people's mobility around neighborhood parks and green spaces before and after the COVID-19 pandemic were compared using signal data from telecommunication carriers. Through the analysis of changes in residence time and movement volume, the movement characteristics of citizens after COVID-19 and changes in walking-based park visits were examined. Second, the factors affecting the mobility change in neighborhood parks and green spaces were analyzed. The social and spatial characteristics that affect citizens' visits to neighborhood parks and green spaces before and after COVID-19 were examined through correlation and multiple regression analysis. Subsequently, through cluster analysis, the types of living areas for the post-COVID era were classified from the perspective of the supply and management of neighborhood parks and green spaces services, and directions for improving neighborhood parks and green spaces by type were presented. Major research findings are as follows: First, since the outbreak of COVID-19, activities within 500m of the residence have increased. The amount of stay and walking movement increased in both 2020 and 2021, which means that the need to review the quantitative standards and attractions of neighborhood parks and green spaces has increased considering the changed scope of the walking and living area. Second, the overall number of visits to neighborhood parks and green spaces by walking has increased since the outbreak of COVID-19. The number of visits to neighborhood parks and green spaces centered on the house and the workplace increased significantly. The park green policy in the post-COVID era should be promoted by discovering underprivileged areas, focusing on areas where residential, commercial, and business facilities are concentrated, and improving neighborhood parks and green services in quantitative and qualitative terms. Third, it was found that the higher the level of park green service, the higher the amount of walking movement. It is necessary to use indicators that contribute to improving citizens' actual park green services, such as walking accessibility, rather than looking at the criteria for securing green areas. Fourth, as a result of cluster analysis, five types of neighborhood parks and green spaces were derived in response to the post-COVID era. This suggests that it is necessary to consider the socioeconomic status and characteristics of living areas and the level of park green services required in future park green policies. This study has academic and policy significance in that it has laid the basis for establishing neighborhood parks and green spaces policy in response to the post-COVID era by using various analysis methodologies such as carrier signal data analysis, GIS analysis, and statistical analysis.

Analysis of shopping website visit types and shopping pattern (쇼핑 웹사이트 탐색 유형과 방문 패턴 분석)

  • Choi, Kyungbin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.85-107
    • /
    • 2019
  • Online consumers browse products belonging to a particular product line or brand for purchase, or simply leave a wide range of navigation without making purchase. The research on the behavior and purchase of online consumers has been steadily progressed, and related services and applications based on behavior data of consumers have been developed in practice. In recent years, customization strategies and recommendation systems of consumers have been utilized due to the development of big data technology, and attempts are being made to optimize users' shopping experience. However, even in such an attempt, it is very unlikely that online consumers will actually be able to visit the website and switch to the purchase stage. This is because online consumers do not just visit the website to purchase products but use and browse the websites differently according to their shopping motives and purposes. Therefore, it is important to analyze various types of visits as well as visits to purchase, which is important for understanding the behaviors of online consumers. In this study, we explored the clustering analysis of session based on click stream data of e-commerce company in order to explain diversity and complexity of search behavior of online consumers and typified search behavior. For the analysis, we converted data points of more than 8 million pages units into visit units' sessions, resulting in a total of over 500,000 website visit sessions. For each visit session, 12 characteristics such as page view, duration, search diversity, and page type concentration were extracted for clustering analysis. Considering the size of the data set, we performed the analysis using the Mini-Batch K-means algorithm, which has advantages in terms of learning speed and efficiency while maintaining the clustering performance similar to that of the clustering algorithm K-means. The most optimized number of clusters was derived from four, and the differences in session unit characteristics and purchasing rates were identified for each cluster. The online consumer visits the website several times and learns about the product and decides the purchase. In order to analyze the purchasing process over several visits of the online consumer, we constructed the visiting sequence data of the consumer based on the navigation patterns in the web site derived clustering analysis. The visit sequence data includes a series of visiting sequences until one purchase is made, and the items constituting one sequence become cluster labels derived from the foregoing. We have separately established a sequence data for consumers who have made purchases and data on visits for consumers who have only explored products without making purchases during the same period of time. And then sequential pattern mining was applied to extract frequent patterns from each sequence data. The minimum support is set to 10%, and frequent patterns consist of a sequence of cluster labels. While there are common derived patterns in both sequence data, there are also frequent patterns derived only from one side of sequence data. We found that the consumers who made purchases through the comparative analysis of the extracted frequent patterns showed the visiting pattern to decide to purchase the product repeatedly while searching for the specific product. The implication of this study is that we analyze the search type of online consumers by using large - scale click stream data and analyze the patterns of them to explain the behavior of purchasing process with data-driven point. Most studies that typology of online consumers have focused on the characteristics of the type and what factors are key in distinguishing that type. In this study, we carried out an analysis to type the behavior of online consumers, and further analyzed what order the types could be organized into one another and become a series of search patterns. In addition, online retailers will be able to try to improve their purchasing conversion through marketing strategies and recommendations for various types of visit and will be able to evaluate the effect of the strategy through changes in consumers' visit patterns.

Calculation of the Peak-hour Ratio at Urban Railway Stations Reflecting Passenger Demand Pattern and Land Use Inventory - A Case of Seoul - (승객 수요 패턴과 역세권의 토지이용 특성을 반영한 도시철도역 첨두시간 집중률 산정 - 서울시를 대상으로 -)

  • Jang, Sunghoon;Kim, Hyo-Seung;Lee, Chungwon;Kim, Dong-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1581-1589
    • /
    • 2013
  • The aim of this study is to suggest a methodology for calculating the peak-hour ratio of passengers at urban railway stations by reflecting the characteristics of passenger demand patterns and the land use inventory of stations. To achieve this, urban railway stations in Seoul are divided into three groups by using factor analysis and cluster analysis. For each station group, we calculate five and four variables related to the passenger demand patterns and the land use inventory of stations, respectively, as well as the peak-hour ratios of passengers. Among these nine variables, average daily passengers and the location quotient (LQ) index for business services are selected as the classification criteria for station groups based on statistical tests. Using the two variables, a group allocation process is suggested to estimate the peak-hour ratio of passengers for a newly-constructed station. Evaluation results based on thirteen stations show that the proposed methodology produces lower errors than the currently-used guideline does. The results of this study contribute to establishing efficiently construction and operation plans for newly-constructed stations.

A Study on Social Supports for the Elderly Housing in Senior Concentrated Cities in the United States and Canada : Focused on Small Cities along Rural Counties (미국과 캐나다 노인밀집도시의 노인주거관련 사회적지원에 관한 연구 : 농촌지역 소도시를 중심으로)

  • Lee, In-Soo
    • Journal of Families and Better Life
    • /
    • v.29 no.3
    • /
    • pp.23-41
    • /
    • 2011
  • The purpose of this study is to explore social supports for elderly housing and their residential lives in small cities along rural counties of the United States and Canada, and suggest future implications for age-concentrated rural villages in Korea. In this study, five small and medium cities in non-metropolitan counties of California and Ontario province were visited and elderly residents and service experts were interviewed about their perceptions of community integrated social support networks for senior residences. The senior housing complexes were built due to influx of both metropolitan and rural residents seeking warm localities, traffic connections, business purposes in active production areas. and leisure attractions. There are five main social support networks for senior housing issues in these areas. First, the areas are claimed for senior zones and accordingly health industries are encouraged by local authorities. Second, the community is homogeneously constructed as a senior friendly environment and include features such as an RV park and mobile cottages. Third, senior-helping seniors are offered active work through golf-cluster active retirement communities. Fourth, traditional theme production camps are mobilized by the elderly workers. Lastly, an information system is maintained for screening volunteers and for senior abuse prevention. On the other hand, residential lives are occasionally negatively influenced by unbalanced concentrations of elderly facilities such as nursing stations and funeral homes. For the future of Korean rural elderly policies, suggestions are made as follows: first, an integrated urban and rural township that contains attractive places for early retiring people who seek a warm atmosphere in later life needs to be constructed. Second, an integrated model retirement village of urban and rural retirement life needs to be initiated as a measure of evaluating the adaptation process of movers in senior concentrated zones. Third, a cooperation system among governmental ministries needs to be formed with the long- term goal of establishing a traditional rural town of independent housing districts and medical facilities in rural areas. Fourth, productive and active lifestyles need to be maintained as the local community and government develop successful retirement rural villages, by limiting the expansion of nursing related facilities. Finally, generation integrated visiting welfare programs and services need to be further developed for the housing areas especially in the winter, when social integration and activity are relatively low.

A Study on the Clustering Method of Row and Multiplex Housing in Seoul Using K-Means Clustering Algorithm and Hedonic Model (K-Means Clustering 알고리즘과 헤도닉 모형을 활용한 서울시 연립·다세대 군집분류 방법에 관한 연구)

  • Kwon, Soonjae;Kim, Seonghyeon;Tak, Onsik;Jeong, Hyeonhee
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.95-118
    • /
    • 2017
  • Recent centrally the downtown area, the transaction between the row housing and multiplex housing is activated and platform services such as Zigbang and Dabang are growing. The row housing and multiplex housing is a blind spot for real estate information. Because there is a social problem, due to the change in market size and information asymmetry due to changes in demand. Also, the 5 or 25 districts used by the Seoul Metropolitan Government or the Korean Appraisal Board(hereafter, KAB) were established within the administrative boundaries and used in existing real estate studies. This is not a district classification for real estate researches because it is zoned urban planning. Based on the existing study, this study found that the city needs to reset the Seoul Metropolitan Government's spatial structure in estimating future housing prices. So, This study attempted to classify the area without spatial heterogeneity by the reflected the property price characteristics of row housing and Multiplex housing. In other words, There has been a problem that an inefficient side has arisen due to the simple division by the existing administrative district. Therefore, this study aims to cluster Seoul as a new area for more efficient real estate analysis. This study was applied to the hedonic model based on the real transactions price data of row housing and multiplex housing. And the K-Means Clustering algorithm was used to cluster the spatial structure of Seoul. In this study, data onto real transactions price of the Seoul Row housing and Multiplex Housing from January 2014 to December 2016, and the official land value of 2016 was used and it provided by Ministry of Land, Infrastructure and Transport(hereafter, MOLIT). Data preprocessing was followed by the following processing procedures: Removal of underground transaction, Price standardization per area, Removal of Real transaction case(above 5 and below -5). In this study, we analyzed data from 132,707 cases to 126,759 data through data preprocessing. The data analysis tool used the R program. After data preprocessing, data model was constructed. Priority, the K-means Clustering was performed. In addition, a regression analysis was conducted using Hedonic model and it was conducted a cosine similarity analysis. Based on the constructed data model, we clustered on the basis of the longitude and latitude of Seoul and conducted comparative analysis of existing area. The results of this study indicated that the goodness of fit of the model was above 75 % and the variables used for the Hedonic model were significant. In other words, 5 or 25 districts that is the area of the existing administrative area are divided into 16 districts. So, this study derived a clustering method of row housing and multiplex housing in Seoul using K-Means Clustering algorithm and hedonic model by the reflected the property price characteristics. Moreover, they presented academic and practical implications and presented the limitations of this study and the direction of future research. Academic implication has clustered by reflecting the property price characteristics in order to improve the problems of the areas used in the Seoul Metropolitan Government, KAB, and Existing Real Estate Research. Another academic implications are that apartments were the main study of existing real estate research, and has proposed a method of classifying area in Seoul using public information(i.e., real-data of MOLIT) of government 3.0. Practical implication is that it can be used as a basic data for real estate related research on row housing and multiplex housing. Another practical implications are that is expected the activation of row housing and multiplex housing research and, that is expected to increase the accuracy of the model of the actual transaction. The future research direction of this study involves conducting various analyses to overcome the limitations of the threshold and indicates the need for deeper research.

Derivation of Digital Music's Ranking Change Through Time Series Clustering (시계열 군집분석을 통한 디지털 음원의 순위 변화 패턴 분류)

  • Yoo, In-Jin;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.171-191
    • /
    • 2020
  • This study focused on digital music, which is the most valuable cultural asset in the modern society and occupies a particularly important position in the flow of the Korean Wave. Digital music was collected based on the "Gaon Chart," a well-established music chart in Korea. Through this, the changes in the ranking of the music that entered the chart for 73 weeks were collected. Afterwards, patterns with similar characteristics were derived through time series cluster analysis. Then, a descriptive analysis was performed on the notable features of each pattern. The research process suggested by this study is as follows. First, in the data collection process, time series data was collected to check the ranking change of digital music. Subsequently, in the data processing stage, the collected data was matched with the rankings over time, and the music title and artist name were processed. Each analysis is then sequentially performed in two stages consisting of exploratory analysis and explanatory analysis. First, the data collection period was limited to the period before 'the music bulk buying phenomenon', a reliability issue related to music ranking in Korea. Specifically, it is 73 weeks starting from December 31, 2017 to January 06, 2018 as the first week, and from May 19, 2019 to May 25, 2019. And the analysis targets were limited to digital music released in Korea. In particular, digital music was collected based on the "Gaon Chart", a well-known music chart in Korea. Unlike private music charts that are being serviced in Korea, Gaon Charts are charts approved by government agencies and have basic reliability. Therefore, it can be considered that it has more public confidence than the ranking information provided by other services. The contents of the collected data are as follows. Data on the period and ranking, the name of the music, the name of the artist, the name of the album, the Gaon index, the production company, and the distribution company were collected for the music that entered the top 100 on the music chart within the collection period. Through data collection, 7,300 music, which were included in the top 100 on the music chart, were identified for a total of 73 weeks. On the other hand, in the case of digital music, since the cases included in the music chart for more than two weeks are frequent, the duplication of music is removed through the pre-processing process. For duplicate music, the number and location of the duplicated music were checked through the duplicate check function, and then deleted to form data for analysis. Through this, a list of 742 unique music for analysis among the 7,300-music data in advance was secured. A total of 742 songs were secured through previous data collection and pre-processing. In addition, a total of 16 patterns were derived through time series cluster analysis on the ranking change. Based on the patterns derived after that, two representative patterns were identified: 'Steady Seller' and 'One-Hit Wonder'. Furthermore, the two patterns were subdivided into five patterns in consideration of the survival period of the music and the music ranking. The important characteristics of each pattern are as follows. First, the artist's superstar effect and bandwagon effect were strong in the one-hit wonder-type pattern. Therefore, when consumers choose a digital music, they are strongly influenced by the superstar effect and the bandwagon effect. Second, through the Steady Seller pattern, we confirmed the music that have been chosen by consumers for a very long time. In addition, we checked the patterns of the most selected music through consumer needs. Contrary to popular belief, the steady seller: mid-term pattern, not the one-hit wonder pattern, received the most choices from consumers. Particularly noteworthy is that the 'Climbing the Chart' phenomenon, which is contrary to the existing pattern, was confirmed through the steady-seller pattern. This study focuses on the change in the ranking of music over time, a field that has been relatively alienated centering on digital music. In addition, a new approach to music research was attempted by subdividing the pattern of ranking change rather than predicting the success and ranking of music.