• 제목/요약/키워드: business analytics

검색결과 213건 처리시간 0.023초

Exploring Barriers Affecting e-Health Service Continuance Intention in India: From the Innovation Resistance Theory Stance

  • Arghya Ray;Pradip Kumar Bala;Yogesh K. Dwivedi
    • Asia pacific journal of information systems
    • /
    • 제32권4호
    • /
    • pp.890-915
    • /
    • 2022
  • Although existing studies on e-health have usually focused on e-health services adoption intention, there is a dearth of studies on the barriers that affect e-health services retention intention especially in India. Additionally, although studies have mostly focused on utilizing expectation-confirmation model to understand innovation related barriers, innovation resistance theory (IRT) has been overlooked. As Indian e-health service providers face stiff challenges due to customer's unwillingness to continue using the service, there is a need to bridge the research gap that exists in this context. This mixed-method study, based on responses received from 289 participants and 1154 online negative reviews from e-Health providers in India, examines the barriers from the IRT stance. Results of this study reveal a notable negative association between tradition, value and financial barrier and intention to continue using e-health services. Additionally, continuance intention affects recommendation. The study concludes with various implications and scope for future research.

비즈니스 인텔리전스 시스템의 활용 방안에 관한 연구: 설명 기능을 중심으로 (A study on the use of a Business Intelligence system : the role of explanations)

  • 권영옥
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.155-169
    • /
    • 2014
  • 다양한 빅데이터 기술이 발전함에 따라, 기업의 전략결정에 있어서 과거에는 의사결정자의 직관이나 경험에 의존하는 경향이 있었다면, 현재는 데이터를 활용한 과학적이고 분석적인 접근이 이루어지고 있다. 이에 많은 기업들이 경영정보시스템 중의 하나인 비즈니스 인텔리전스 (Business Intelligence) 시스템의 예측분석 기능을 활용하고 있다. 하지만, 이러한 시스템이 미래의 경영환경 변화를 예측하고 기업의 의사결정을 돕는 조언자 (Advisor)로서 역할을 한다고 가정할 때, 시스템에서 제공하는 분석결과가 의사결정자에게 도움을 주는 조언 (Advice) 의 역할을 하지 못하는 경우가 많은 실정이다. 따라서, 본 연구에서는 미래예측의 문제에 있어 의사결정자가 시스템의 조언을 따르는데 영향을 미치는 요소들과 영향력에 대해 분석하고, 그 결과를 바탕으로 데이터 기반의 의사결정을 보다 적극적으로 지원하는 시스템 환경을 제시하고자 한다. 좀 더 구체적으로는 예측 과정에 대한 자세한 설명이나 근거 제시가 시스템의 예측결과에 대한 의사결정자의 수용정도에 미치는 영향을 연구하였다. 이를 위하여 193명의 실험자를 대상으로 영화의 개봉 주 매출액을 예측하는 업무를 수행하고, 예측에 대한 설명의 길이와 조언자의 유형(사람과 시스템의 조언 비교)뿐 아니라 의사결정자의 개인 특성이 의사결정자의 조언 수용정도에 미치는 영향을 분석하였다. 시스템에서 제공하는 조언 내용인 예측결과와 설명에 대해 의사결정가가 느끼는 유용성, 신뢰성, 만족도가 조언의 수용에 미치는 영향도 분석하였다. 본 연구는 시스템의 분석결과를 조언으로 보고 조언자와 조언에 관한 의사결정학 분야의 선행연구를 접목시켜 경영정보시스템 연구 분야를 확장하였다는 점에서 연구의 의의가 있고, 실무적으로도 데이터 기반의 의사결정을 보다 적극적으로 지원할 수 있는 시스템 환경을 만들기 위해서 고려해야 할 점들을 제시함으로써 시스템 활용을 위한 정책결정에도 도움을 줄 수 있을 것으로 본다.

Major concerns regarding food services based on news media reports during the COVID-19 outbreak using the topic modeling approach

  • Yoon, Hyejin;Kim, Taejin;Kim, Chang-Sik;Kim, Namgyu
    • Nutrition Research and Practice
    • /
    • 제15권sup1호
    • /
    • pp.110-121
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Coronavirus disease 2019 (COVID-19) cases were first reported in December 2019, in China, and an increasing number of cases have since been detected all over the world. The purpose of this study was to collect significant news media reports on food services during the COVID-19 crisis and identify public communication and significant concerns regarding COVID-19 for suggesting future directions for the food industry and services. SUBJECTS/METHODS: News articles pertaining to food services were extracted from the home pages of major news media websites such as BBC, CNN, and Fox News between March 2020 and February 2021. The retrieved data was sorted and analyzed using Python software. RESULTS: The results of text analytics were presented in the format of the topic label and category for individual topics. The food and health category presented the effects of the COVID-19 pandemic on food and health, such as an increase in delivery services. The policy category was indicative of a change in government policy. The lifestyle change category addressed topics such as an increase in social media usage. CONCLUSIONS: This study is the first to analyze major news media (i.e., BBC, CNN, and Fox News) data related to food services in the context of the COVID-19 pandemic. Text analytics research on the food services domain revealed different categories such as food and health, policy, and lifestyle change. Therefore, this study contributes to the body of knowledge on food services research, through the use of text analytics to elicit findings from media sources.

대용량 분산 Abyss 스토리지의 CDA (Connected Data Architecture) 기반 AI 서비스의 설계 및 활용 (Design and Utilization of Connected Data Architecture-based AI Service of Mass Distributed Abyss Storage)

  • 차병래;박선;서재현;김종원;신병춘
    • 스마트미디어저널
    • /
    • 제10권1호
    • /
    • pp.99-107
    • /
    • 2021
  • 4차 산업혁명, Industry 4.0 과 더불어 최근 ICT 분야의 메가트렌드는 빅데이터, IoT, 클라우드 컴퓨팅, 그리고 인공지능이라고 할 수 있다. 따라서, 4차 산업혁명 시대에 알맞은 AI 서비스들의 기술 개발과 다양한 산업 영역에서 ICT 분야의 융합에 따른 BI (Business Intelligence), IA (Intelligent Analytics, BI + AI), AIoT (Artificial Intelligence of Things), AIOPS (Artificial Intelligence for IT Operations), RPA 2.0 (Robotic Process Automation + AI) 등의 세분화된 기술 발전으로 급속한 디지털 전환 (Digital Transformation)이 진행되고 있는 추세이다. 본 연구에서는 이러한 기술적 상황에 따른 대용량 분산 Abyss 스토리지 기반으로 인프라 측면의 GPU, CDA (Connected Data Architecture) 프레임워크, 그리고 AI의 다양한 머신러닝 서비스들을 통합 및 고도화를 목표로 하며, AI 비즈니스의 수익 모델을 다양한 산업 영역에 활용하고자 한다.

시뮬레이티드 어니일링 기반의 랜덤 포레스트를 이용한 기업부도예측 (Predicting Corporate Bankruptcy using Simulated Annealing-based Random Fores)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.155-170
    • /
    • 2018
  • 기업의 금융 부도를 예측하는 것은 전통적으로 비즈니스 분석에서 가장 중요한 예측문제 중 하나이다. 선행연구에서 예측모델은 통계 및 기계학습 기반의 기법을 적용하거나 결합하는 방식으로 제안되었다. 본 논문에서는 잘 알려진 최적화기법 중 하나인 시뮬레이티드 어니일링에 기반한 새로운 지능형 예측모델을 제안한다. 시뮬레이티드 어니일링은 유전자알고리즘과 유사한 최적화 성능을 가진 것으로 알려져 있다. 그럼에도 불구하고, 시뮬레이티드 어니일링을 사용한 비즈니스 의사결정 문제의 예측과 분류에 관한 연구가 거의 없었기 때문에, 비즈니스 분석에서의 유용성을 확인하는 것은 의미가 있다. 본 연구에서는 시뮬레이티드 어니일링과 기계학습의 결합 모델을 사용하여 부도예측모델의 입력 특징을 선정한다. 최적화 기법과 기계학습기법을 결합하는 대표적인 유형은 특징 선택, 특징 가중치 및 사례 선택이다. 이 연구에서는 선행연구에서 가장 많이 연구된 특징 선택을 위한 결합모델을 제안한다. 제안하는 모델의 우수성을 확인하기 위하여 본 연구에서는 한국 기업의 실제 재무데이터를 이용하여 그 결과를 분석한다. 분석결과는 제안된 모델의 예측 정확도가 단순한 모델의 예측 정확성보다 우수하다는 것을 보여준다. 특히 기존의 의사결정나무, 랜덤포레스트, 인공신경망, SVM 및 로지스틱 회귀분석에 비해 분류성능이 향상되었다.

Applications of Machine Learning Models on Yelp Data

  • Ruchi Singh;Jongwook Woo
    • Asia pacific journal of information systems
    • /
    • 제29권1호
    • /
    • pp.35-49
    • /
    • 2019
  • The paper attempts to document the application of relevant Machine Learning (ML) models on Yelp (a crowd-sourced local business review and social networking site) dataset to analyze, predict and recommend business. Strategically using two cloud platforms to minimize the effort and time required for this project. Seven machine learning algorithms in Azure ML of which four algorithms are implemented in Databricks Spark ML. The analyzed Yelp business dataset contained 70 business attributes for more than 350,000 registered business. Additionally, review tips and likes from 500,000 users have been processed for the project. A Recommendation Model is built to provide Yelp users with recommendations for business categories based on their previous business ratings, as well as the business ratings of other users. Classification Model is implemented to predict the popularity of the business as defining the popular business to have stars greater than 3 and unpopular business to have stars less than 3. Text Analysis model is developed by comparing two algorithms, uni-gram feature extraction and n-feature extraction in Azure ML studio and logistic regression model in Spark. Comparative conclusions have been made related to efficiency of Spark ML and Azure ML for these models.

Comparing Machine Learning Classifiers for Movie WOM Opinion Mining

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권8호
    • /
    • pp.3169-3181
    • /
    • 2015
  • Nowadays, online word-of-mouth has become a powerful influencer to marketing and sales in business. Opinion mining and sentiment analysis is frequently adopted at market research and business analytics field for analyzing word-of-mouth content. However, there still remain several challengeable areas for 1) sentiment analysis aiming for Korean word-of-mouth content in film market, 2) availability of machine learning models only using linguistic features, 3) effect of the size of the feature set. This study took a sample of 10,000 movie reviews which had posted extremely negative/positive rating in a movie portal site, and conducted sentiment analysis with four machine learning algorithms: naïve Bayesian, decision tree, neural network, and support vector machines. We found neural network and support vector machine produced better accuracy than naïve Bayesian and decision tree on every size of the feature set. Besides, the performance of them was boosting with increasing of the feature set size.

Data Analytics Application: A Case Study of Online Business for Vietnamese Handicraft Products on Amazon

  • Lan, Nguyen Thi Thao;Phuong, Nguyen Pham Anh;Trang, Nguyen Thi My;Huong, Pham Thi My;An, Nguyen Thu;Le, Hoanh-Su
    • Journal of Multimedia Information System
    • /
    • 제8권1호
    • /
    • pp.61-68
    • /
    • 2021
  • The paper is based on data collected from the Amazon website (specific in the Handmade's Category) to understand and analyze Vietnamese artisans' business context. Data analysis is also applied to determine the factors that bring success Handmade products and compare products of the same industry among competitors to find out potential products. By collecting data from Amazon and analyzing the data, we extracted useful information for online business developers. Besides, the list of potential products in Handmade sector can be referred to improve the business and compete with competitors. This paper also proposes solutions to help Vietnamese products become more appealing to international customers on the Amazon website.

속성선택방법을 이용한 전기자동차 소셜미디어 데이터의 감성분석 연구 (Exploring the Sentiment Analysis of Electric Vehicles Social Media Data by Using Feature Selection Methods)

  • 프란시스 조셉 코스텔로;이건창
    • 디지털융복합연구
    • /
    • 제18권2호
    • /
    • pp.249-259
    • /
    • 2020
  • 본 연구는 전기자동차(EV)에 대한 소셜미디어 데이터를 기반으로 감성분석 (SA)과 속성선택 (FS)방법을 적용하여 전기자동차에 대한 일반 사람들의 의견을 보다 효과적이고 정확히 예측할 수 있는 새로운 방법론을 제안한다. 구체적인 방법은 다음과 같다. 첫째, 유튜브에 있는 전기자동차에 대한 일반 사람들의 의견을 추출하였다. 둘째, 분석의 효과성을 증대하기 위하여 카이 스퀘어, 정보획득량, 릴리프에프 등 세가지 속성선택 방법을 적용하였다. 그 결과 로지스틱 회귀분석 및 서포트 벡터 머신 분류 기법에서 가장 의미있는 결과를 얻을 수 있다는 것이 확인되었다.

물류에서 빅데이터 분석의 활용을 위한 가치 모델 (Value Model for Applications of Big Data Analytics in Logistics)

  • 김승욱
    • 디지털융복합연구
    • /
    • 제15권9호
    • /
    • pp.167-178
    • /
    • 2017
  • 빅데이터는 기업에게 있어 미래의 핵심자산이며 물류부문에도 새로운 경쟁력을 높일 수 있는 핵심적인 요소이다. 그러나 지금까지 물류에서 빅데이터를 어떻게 수집하고 분석하며 활용해야 할지에 대한 연구는 아직 부족하다. 이러한 상황에서 본 연구는 기존 선행연구와 DHL의 연구에서 나타난 물류에서의 빅데이터 분석 및 활용에 대한 결과를 바탕으로 물류기업에게 적용 가능한 하나의 가치모델을 개발하였다. 본 연구의 목적은 물류에서 빅데이터 분석의 활용을 통하여 물류기업의 운영효율성 및 고객경험의 극대화 수준을 향상키시고 빅데이터 활용에 따른 경쟁적 지위와 경쟁력을 향상시키고 새로운 사업기회를 개발하는 데에 있다. 이러한 연구는 물류부문에서 빅데이터 분석의 활용을 위한 가치모델을 새롭게 창출하는 의의가 있으며 향후 물류부문 뿐만 아니라 타 업종에도 적용가능한 시사점을 제공할 수 있다.