Although existing studies on e-health have usually focused on e-health services adoption intention, there is a dearth of studies on the barriers that affect e-health services retention intention especially in India. Additionally, although studies have mostly focused on utilizing expectation-confirmation model to understand innovation related barriers, innovation resistance theory (IRT) has been overlooked. As Indian e-health service providers face stiff challenges due to customer's unwillingness to continue using the service, there is a need to bridge the research gap that exists in this context. This mixed-method study, based on responses received from 289 participants and 1154 online negative reviews from e-Health providers in India, examines the barriers from the IRT stance. Results of this study reveal a notable negative association between tradition, value and financial barrier and intention to continue using e-health services. Additionally, continuance intention affects recommendation. The study concludes with various implications and scope for future research.
다양한 빅데이터 기술이 발전함에 따라, 기업의 전략결정에 있어서 과거에는 의사결정자의 직관이나 경험에 의존하는 경향이 있었다면, 현재는 데이터를 활용한 과학적이고 분석적인 접근이 이루어지고 있다. 이에 많은 기업들이 경영정보시스템 중의 하나인 비즈니스 인텔리전스 (Business Intelligence) 시스템의 예측분석 기능을 활용하고 있다. 하지만, 이러한 시스템이 미래의 경영환경 변화를 예측하고 기업의 의사결정을 돕는 조언자 (Advisor)로서 역할을 한다고 가정할 때, 시스템에서 제공하는 분석결과가 의사결정자에게 도움을 주는 조언 (Advice) 의 역할을 하지 못하는 경우가 많은 실정이다. 따라서, 본 연구에서는 미래예측의 문제에 있어 의사결정자가 시스템의 조언을 따르는데 영향을 미치는 요소들과 영향력에 대해 분석하고, 그 결과를 바탕으로 데이터 기반의 의사결정을 보다 적극적으로 지원하는 시스템 환경을 제시하고자 한다. 좀 더 구체적으로는 예측 과정에 대한 자세한 설명이나 근거 제시가 시스템의 예측결과에 대한 의사결정자의 수용정도에 미치는 영향을 연구하였다. 이를 위하여 193명의 실험자를 대상으로 영화의 개봉 주 매출액을 예측하는 업무를 수행하고, 예측에 대한 설명의 길이와 조언자의 유형(사람과 시스템의 조언 비교)뿐 아니라 의사결정자의 개인 특성이 의사결정자의 조언 수용정도에 미치는 영향을 분석하였다. 시스템에서 제공하는 조언 내용인 예측결과와 설명에 대해 의사결정가가 느끼는 유용성, 신뢰성, 만족도가 조언의 수용에 미치는 영향도 분석하였다. 본 연구는 시스템의 분석결과를 조언으로 보고 조언자와 조언에 관한 의사결정학 분야의 선행연구를 접목시켜 경영정보시스템 연구 분야를 확장하였다는 점에서 연구의 의의가 있고, 실무적으로도 데이터 기반의 의사결정을 보다 적극적으로 지원할 수 있는 시스템 환경을 만들기 위해서 고려해야 할 점들을 제시함으로써 시스템 활용을 위한 정책결정에도 도움을 줄 수 있을 것으로 본다.
BACKGROUND/OBJECTIVES: Coronavirus disease 2019 (COVID-19) cases were first reported in December 2019, in China, and an increasing number of cases have since been detected all over the world. The purpose of this study was to collect significant news media reports on food services during the COVID-19 crisis and identify public communication and significant concerns regarding COVID-19 for suggesting future directions for the food industry and services. SUBJECTS/METHODS: News articles pertaining to food services were extracted from the home pages of major news media websites such as BBC, CNN, and Fox News between March 2020 and February 2021. The retrieved data was sorted and analyzed using Python software. RESULTS: The results of text analytics were presented in the format of the topic label and category for individual topics. The food and health category presented the effects of the COVID-19 pandemic on food and health, such as an increase in delivery services. The policy category was indicative of a change in government policy. The lifestyle change category addressed topics such as an increase in social media usage. CONCLUSIONS: This study is the first to analyze major news media (i.e., BBC, CNN, and Fox News) data related to food services in the context of the COVID-19 pandemic. Text analytics research on the food services domain revealed different categories such as food and health, policy, and lifestyle change. Therefore, this study contributes to the body of knowledge on food services research, through the use of text analytics to elicit findings from media sources.
4차 산업혁명, Industry 4.0 과 더불어 최근 ICT 분야의 메가트렌드는 빅데이터, IoT, 클라우드 컴퓨팅, 그리고 인공지능이라고 할 수 있다. 따라서, 4차 산업혁명 시대에 알맞은 AI 서비스들의 기술 개발과 다양한 산업 영역에서 ICT 분야의 융합에 따른 BI (Business Intelligence), IA (Intelligent Analytics, BI + AI), AIoT (Artificial Intelligence of Things), AIOPS (Artificial Intelligence for IT Operations), RPA 2.0 (Robotic Process Automation + AI) 등의 세분화된 기술 발전으로 급속한 디지털 전환 (Digital Transformation)이 진행되고 있는 추세이다. 본 연구에서는 이러한 기술적 상황에 따른 대용량 분산 Abyss 스토리지 기반으로 인프라 측면의 GPU, CDA (Connected Data Architecture) 프레임워크, 그리고 AI의 다양한 머신러닝 서비스들을 통합 및 고도화를 목표로 하며, AI 비즈니스의 수익 모델을 다양한 산업 영역에 활용하고자 한다.
기업의 금융 부도를 예측하는 것은 전통적으로 비즈니스 분석에서 가장 중요한 예측문제 중 하나이다. 선행연구에서 예측모델은 통계 및 기계학습 기반의 기법을 적용하거나 결합하는 방식으로 제안되었다. 본 논문에서는 잘 알려진 최적화기법 중 하나인 시뮬레이티드 어니일링에 기반한 새로운 지능형 예측모델을 제안한다. 시뮬레이티드 어니일링은 유전자알고리즘과 유사한 최적화 성능을 가진 것으로 알려져 있다. 그럼에도 불구하고, 시뮬레이티드 어니일링을 사용한 비즈니스 의사결정 문제의 예측과 분류에 관한 연구가 거의 없었기 때문에, 비즈니스 분석에서의 유용성을 확인하는 것은 의미가 있다. 본 연구에서는 시뮬레이티드 어니일링과 기계학습의 결합 모델을 사용하여 부도예측모델의 입력 특징을 선정한다. 최적화 기법과 기계학습기법을 결합하는 대표적인 유형은 특징 선택, 특징 가중치 및 사례 선택이다. 이 연구에서는 선행연구에서 가장 많이 연구된 특징 선택을 위한 결합모델을 제안한다. 제안하는 모델의 우수성을 확인하기 위하여 본 연구에서는 한국 기업의 실제 재무데이터를 이용하여 그 결과를 분석한다. 분석결과는 제안된 모델의 예측 정확도가 단순한 모델의 예측 정확성보다 우수하다는 것을 보여준다. 특히 기존의 의사결정나무, 랜덤포레스트, 인공신경망, SVM 및 로지스틱 회귀분석에 비해 분류성능이 향상되었다.
The paper attempts to document the application of relevant Machine Learning (ML) models on Yelp (a crowd-sourced local business review and social networking site) dataset to analyze, predict and recommend business. Strategically using two cloud platforms to minimize the effort and time required for this project. Seven machine learning algorithms in Azure ML of which four algorithms are implemented in Databricks Spark ML. The analyzed Yelp business dataset contained 70 business attributes for more than 350,000 registered business. Additionally, review tips and likes from 500,000 users have been processed for the project. A Recommendation Model is built to provide Yelp users with recommendations for business categories based on their previous business ratings, as well as the business ratings of other users. Classification Model is implemented to predict the popularity of the business as defining the popular business to have stars greater than 3 and unpopular business to have stars less than 3. Text Analysis model is developed by comparing two algorithms, uni-gram feature extraction and n-feature extraction in Azure ML studio and logistic regression model in Spark. Comparative conclusions have been made related to efficiency of Spark ML and Azure ML for these models.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권8호
/
pp.3169-3181
/
2015
Nowadays, online word-of-mouth has become a powerful influencer to marketing and sales in business. Opinion mining and sentiment analysis is frequently adopted at market research and business analytics field for analyzing word-of-mouth content. However, there still remain several challengeable areas for 1) sentiment analysis aiming for Korean word-of-mouth content in film market, 2) availability of machine learning models only using linguistic features, 3) effect of the size of the feature set. This study took a sample of 10,000 movie reviews which had posted extremely negative/positive rating in a movie portal site, and conducted sentiment analysis with four machine learning algorithms: naïve Bayesian, decision tree, neural network, and support vector machines. We found neural network and support vector machine produced better accuracy than naïve Bayesian and decision tree on every size of the feature set. Besides, the performance of them was boosting with increasing of the feature set size.
The paper is based on data collected from the Amazon website (specific in the Handmade's Category) to understand and analyze Vietnamese artisans' business context. Data analysis is also applied to determine the factors that bring success Handmade products and compare products of the same industry among competitors to find out potential products. By collecting data from Amazon and analyzing the data, we extracted useful information for online business developers. Besides, the list of potential products in Handmade sector can be referred to improve the business and compete with competitors. This paper also proposes solutions to help Vietnamese products become more appealing to international customers on the Amazon website.
본 연구는 전기자동차(EV)에 대한 소셜미디어 데이터를 기반으로 감성분석 (SA)과 속성선택 (FS)방법을 적용하여 전기자동차에 대한 일반 사람들의 의견을 보다 효과적이고 정확히 예측할 수 있는 새로운 방법론을 제안한다. 구체적인 방법은 다음과 같다. 첫째, 유튜브에 있는 전기자동차에 대한 일반 사람들의 의견을 추출하였다. 둘째, 분석의 효과성을 증대하기 위하여 카이 스퀘어, 정보획득량, 릴리프에프 등 세가지 속성선택 방법을 적용하였다. 그 결과 로지스틱 회귀분석 및 서포트 벡터 머신 분류 기법에서 가장 의미있는 결과를 얻을 수 있다는 것이 확인되었다.
빅데이터는 기업에게 있어 미래의 핵심자산이며 물류부문에도 새로운 경쟁력을 높일 수 있는 핵심적인 요소이다. 그러나 지금까지 물류에서 빅데이터를 어떻게 수집하고 분석하며 활용해야 할지에 대한 연구는 아직 부족하다. 이러한 상황에서 본 연구는 기존 선행연구와 DHL의 연구에서 나타난 물류에서의 빅데이터 분석 및 활용에 대한 결과를 바탕으로 물류기업에게 적용 가능한 하나의 가치모델을 개발하였다. 본 연구의 목적은 물류에서 빅데이터 분석의 활용을 통하여 물류기업의 운영효율성 및 고객경험의 극대화 수준을 향상키시고 빅데이터 활용에 따른 경쟁적 지위와 경쟁력을 향상시키고 새로운 사업기회를 개발하는 데에 있다. 이러한 연구는 물류부문에서 빅데이터 분석의 활용을 위한 가치모델을 새롭게 창출하는 의의가 있으며 향후 물류부문 뿐만 아니라 타 업종에도 적용가능한 시사점을 제공할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.