• Title/Summary/Keyword: bursts-methods

Search Result 22, Processing Time 0.024 seconds

ON SPATIAL DISTRIBUTION OF SHORT GAMMA-RAY BURSTS FROM EXTRAGALACTIC MAGNETAR FLARES

  • Chang, Heon-Young;Kim, Hee-Il
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Recently, one interesting possibility is proposed that a magnetar can be a progenitor of short and hard gamma-ray bursts (GRBs). If this is true, one may expect that the short and hard GRBs, at least some of GRBs in this class, are distributed in the Euclidean space and that the angular position of these GRBs is correlated with galaxy clusters. Even though it is reported that the correlation is statistically marginal, the observed value of < $V/V_{max}$ > deviates from the Euclidean value. The latter fact is often used as evidence against a local extragalactic origin for short GRB class. We demonstrate that GRB sample of which the value of < $V/V_{max}$ > deviates from the Euclidean value can be spatially confined within the low value of z. We select very short bursts (TgO < 0.3 sec) from the BATSE 4B catalog. The value of < $V/V_{max}$ > of the short bursts is 0.4459. Considering a conic-beam and a cylindrical beam for the luminosity function, we deduce the corresponding spatial distribution of the GRB sources. We also calculate the fraction of bursts whose redshifts are larger than a certain redshift z', i.e. f>z'. We find that GRBs may be distributed near to us, despite the non-Euclidean value of < $V/V_{max}$ >. A broad and uniform beam pattern seems compatible with the magnetar model in that the magnetar model requires a small $z_{max}$.

Influence of the roof lithological characteristics on rock burst: a case study in Tangshan colliery, China

  • Jienan, Pan;Zhaoping, Meng;Quanlin, Hou;Yiwen, Ju;Guofu, Li
    • Geomechanics and Engineering
    • /
    • v.1 no.2
    • /
    • pp.143-154
    • /
    • 2009
  • Many factors influence occurrences of rock burst in coal mines, such as mining methods, control methods of the coal roof, lithological characteristics of the roof and floor, tectonic stress, groundwater and so on. Among those factors, lithological characteristics in the roof are the intrinsic controlling factors that affect rock burst during coal mining. Tangshan colliery is one of the coal mines that have suffered seriously from rock bursts in China. In this paper, based on the investigating the lithological characteristics of coal roofs and occurrence of rock bursts in Tangshan colliery, a numerical method is used to study the influence of roof lithological characteristics on rock burst potential. The results show that the lithological characteristics in the roof have an important impact on the distributions of stresses and elastic strain energy in coal seams and their surrounding rocks. Occurrences of rock bursts in this colliery have a close correlation with the thick-bedded, medium- to fine-grained sandstones in the roof. Such strata can easily cause severe stress concentration and accumulate enough energy to trigger rock bursts in the working face during mining operations.

Automatic Detection of Type II Solar Radio Burst by Using 1-D Convolution Neutral Network

  • Kyung-Suk Cho;Junyoung Kim;Rok-Soon Kim;Eunsu Park;Yuki Kubo;Kazumasa Iwai
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.213-224
    • /
    • 2023
  • Type II solar radio bursts show frequency drifts from high to low over time. They have been known as a signature of coronal shock associated with Coronal Mass Ejections (CMEs) and/or flares, which cause an abrupt change in the space environment near the Earth (space weather). Therefore, early detection of type II bursts is important for forecasting of space weather. In this study, we develop a deep-learning (DL) model for the automatic detection of type II bursts. For this purpose, we adopted a 1-D Convolution Neutral Network (CNN) as it is well-suited for processing spatiotemporal information within the applied data set. We utilized a total of 286 radio burst spectrum images obtained by Hiraiso Radio Spectrograph (HiRAS) from 1991 and 2012, along with 231 spectrum images without the bursts from 2009 to 2015, to recognizes type II bursts. The burst types were labeled manually according to their spectra features in an answer table. Subsequently, we applied the 1-D CNN technique to the spectrum images using two filter windows with different size along time axis. To develop the DL model, we randomly selected 412 spectrum images (80%) for training and validation. The train history shows that both train and validation losses drop rapidly, while train and validation accuracies increased within approximately 100 epoches. For evaluation of the model's performance, we used 105 test images (20%) and employed a contingence table. It is found that false alarm ratio (FAR) and critical success index (CSI) were 0.14 and 0.83, respectively. Furthermore, we confirmed above result by adopting five-fold cross-validation method, in which we re-sampled five groups randomly. The estimated mean FAR and CSI of the five groups were 0.05 and 0.87, respectively. For experimental purposes, we applied our proposed model to 85 HiRAS type II radio bursts listed in the NGDC catalogue from 2009 to 2016 and 184 quiet (no bursts) spectrum images before and after the type II bursts. As a result, our model successfully detected 79 events (93%) of type II events. This results demonstrates, for the first time, that the 1-D CNN algorithm is useful for detecting type II bursts.

FOREGROUND OF GAMMA-RAY BURSTS (GRBS) FROM AKARI FIS DATA

  • Toth, L. Viktor;Doi, Yasuo;Zahorecz, Sarolta;Agas, Marton;Balazs, Lajos G.;Forro, Adrienn;Racz, Istvan I.
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.113-116
    • /
    • 2017
  • A significant number of the parameters of a gamma-ray burst (GRB) and its host galaxy are calculated from the afterglow. There are various methods obtaining extinction values for the necessary correction for galactic foreground. These are: galaxy counts, from HI 21 cm surveys, from spectroscopic measurements and colors of nearby Galactic stars, or using extinction maps calculated from infrared surveys towards the GRB. We demonstrate that AKARI Far-Infrared Surveyor sky surface brightness maps are useful uncovering the fine structure of the galactic foreground of GRBs. Galactic cirrus structures of a number of GRBs are calculated with a 2 arcminute resolution, and the results are compared to that of other methods.

GAMMA-RAY BURST FORMATION ENVIRONMENT: COMPARISON OF REDSHIFT DISTRIBUTIONS OF GRB AFTERGLOWS (감마선 폭발체의 생성 환경: 에너지 영역별 잔유휘광의 거리 분포 비교)

  • Kim, Sung-Eun;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.377-384
    • /
    • 2005
  • Since gamma-ray bursts(GRBs) have been first known to science societites in 1973, many scientists are involved in their studies. Observations of GRB afterglows provide us with much information on the environment in which the observed GRBs are born. Study of GRB afterglows deals with longer timescale emissions in lower energy bands (e.g., months or even up to years) than prompt emissions in gamma-rays. Not all the bursts accompany afterglows in whole ranges of waveleogths. It has been suggested as a reason for that, for instance, that radio and/or X-ray afterglows are not recorded mainly due to lower sensitivity of detectors, and optical afterglows due to extinctions in intergalactic media or self-extinctions within a host galaxy itself. Based on the idea that these facts may also provide information on the GRE environment, we analyze statistical properties of GRB afterglows. We first select samples of the redshift-known GRBs according to the wavelength of afterglow they accompanied. We then compare their distributious as a function of redshift, using statistical methods. As a results, we find that the distribution of the GRBs with X-ray afterglows is consistent with that of the GRBs with optical afterglows. We, therefore, conclude that the lower detection rate of optical afterglows is not due to extinctions in intergalactic media.

Riemann Solvers in Relativistic Hydrodynamics: Basics and Astrophysical Applications

  • IBANEZ JOSE MA.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.191-201
    • /
    • 2001
  • My contribution to these proceedings summarizes a general overview on High Resolution Shock Capturing methods (HRSC) in the field of relativistic hydrodynamics with special emphasis on Riemann solvers. HRSC techniques achieve highly accurate numerical approximations (formally second order or better) in smooth regions of the flow, and capture the motion of unresolved steep gradients without creating spurious oscillations. In the first part I will show how these techniques have been extended to relativistic hydrodynamics, making it possible to explore some challenging astrophysical scenarios. I will review recent literature concerning the main properties of different special relativistic Riemann solvers, and discuss several 1D and 2D test problems which are commonly used to evaluate the performance of numerical methods in relativistic hydrodynamics. In the second part I will illustrate the use of HRSC methods in several astrophysical applications where special and general relativistic hydrodynamical processes play a crucial role.

  • PDF

THE PEAK ENERGY-DURATION CORRELATION AND POSSIBLE IMPLICATIONS ON GAMMA RAY BURST PROGENITOR

  • Chang Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.3
    • /
    • pp.167-176
    • /
    • 2006
  • We investigate the correlation between the peak energy and the burst duration using available long GRB data with known redshift, whose circumburst medium type has been suggested via afterglow light curve modeling. We find that the peak energy and the burst duration of the observed GRBs are correlated both in the observer frame and in the GRB rest frame. For our total sample we obtain, for instance, the Spearman rank-order correlation values ${\sim}0.75\;and\;{\sim}0.65$ with the chance probabilities $P=1.0{\times}10^{-3}\;and\;P=6.0{\times}10^{-3}$ in the observer frame and in the GRB rest frame, respectively. We note that taking the effects of the expanding universe into account reduces the value a bit. We further attempt to separate our GRB sample into the 'ISM' GRBs and the 'WIND' GRBs according to environment models inferred from the afterglow light curves and apply statistical tests, as one may expect that clues on the progenitor of GRBs can be deduced directly from prompt emission properties other than from the ambient environment surrounding GRBs. We find that two subsamples of GRBs show different correlation coefficients. That is, the Spearman rank-order correlation are ${\sim}0.65\;and\;{\sim}0.57$ for the 'ISM' GRBs and 'WIND' GRBs, respectively, after taking the effects of the expanding universe into account. It is not yet, however, statistically very much significant that the GRBS in two types of circumburst media show statistically characteristic behaviors, from which one may conclude that all the long bursts are not originated from a single progenitor population. A larger size of data is required to increase the statistical significance.

Cyclic Alternating Pattern : Implications for Insomnia (불면증에서 순환교대파형의 의미)

  • Cyn, Jae-Gong
    • Sleep Medicine and Psychophysiology
    • /
    • v.17 no.2
    • /
    • pp.75-84
    • /
    • 2010
  • The cyclic alternating pattern (CAP) is a periodic EEG activity in NREM sleep, characterized by sequences of transient electrocortical events that are distinct from background EEG activities. A CAP cycle consists of two periodic EEG features, phase A and subsequent phase B whose durations are 2-60 s. At least two consecutive CAP cycles are required to define a CAP sequence. The CAP phase A is a phasic EEG event, such as delta bursts, vertex sharp transients, K-complex sequences, polyphasic bursts, K-alpha, intermittent alpha, and arousals. Phase B is repetitive periods of background EEG activity. The absence of CAP more than 60 seconds or an isolated phase A is classified as non-CAP. Phase A activities can be classified into three subtypes (A1, A2, and A3), based on the amounts of high-voltage slow waves (EEG synchrony) and low-amplitude fast rhythms (EEG desynchrony). CAP rate, the percentage of CAP durations in NREM sleep is considered to be a physiologic marker of the NREM sleep instability. In insomnia, the frequent discrepancy between self-reports and polysomnographic findings could be attributed to subtle abnormalities in the sleep tracing, which are overlooked by the conventional scoring methods. The conventional scoring scheme has superiority in analysis of macrostructure of sleep but shows limited power in finding arousals and transient EEG events that are major component of microstructure of sleep. But, it has recently been found that a significant correlation exists between CAP rate and the subjective estimates of the sleep quality in insomniacs and sleep-improving treatments often reduce the amount of CAP. Thus, the extension of conventional sleep measures with the new CAP variables, which appear to be the more sensitive to sleep disturbance, may improve our knowledge on the diagnosis and management of insomnia.

  • PDF

Effects of $Ca^{2+}$ and $K^+$ on the Spike Action Potentials in Oxytocin-induced Uterine Contractions (칼슘 및 칼륨이온이 흰쥐 자궁근(子宮筋) 활동전압(活動電壓)에 미치는 영향(影響))

  • Kim, Chul-Soo;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.20 no.1
    • /
    • pp.43-52
    • /
    • 1986
  • The influences of extracellular $Ca^{2+}\;and\;K^+$ upon the spike action potentials were studied in isolated uterine strips of rat. Regular, rhythmic uterine contractions were induced by the administration of oxytocin$(0.2{\sim}0.5\;I.U.)$, and recorded with force transducer. Spike action potentials were extracellularly measured by use of suction electrode, and compared with those recorded intracellularly by glass microelectrode. The results obtained were as follows : 1) The frequency and duration of spike bursts, and the number of spikes in a burst could be analyzed by use of both methods. But the absolute values of membrane potential were not measurable with the suction electrode. 2) The duration of contraction$(CD_{90};\;the\;duration\;of\;90%\;relaxation)$ was lengthened from the control 17.0 sec to 20.6 sec, in parallel with the increase of spike number from the control 21 to 26, as the increase in $Ca^{2+}$ concentration from 2 to 4 mM. 3) The amplitude and frequency of contractions were gradually decreased, simultaneously with the decrease in the number of spikes in a burst, when the $Ca^{2+}-antagonist$, verapamil was administered cumulatively. 4) The number of spikes was changed from the control 15 to 7, in cabs of the administration of ver)'low dose of verapamil$(10^{-6}\;g/l)$. 5) Increase in the numbers of spike bursts was well matched to the increase in frequency of contractions when extracellular $K^+$ was increased.

  • PDF

POLARIZATION AND POLARIMETRY: A REVIEW

  • Trippe, Sascha
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.1
    • /
    • pp.15-39
    • /
    • 2014
  • Polarization is a basic property of light and is fundamentally linked to the internal geometry of a source of radiation. Polarimetry complements photometric, spectroscopic, and imaging analyses of sources of radiation and has made possible multiple astrophysical discoveries. In this article I review (i) the physical basics of polarization: electromagnetic waves, photons, and parameterizations; (ii) astrophysical sources of polarization: scattering, synchrotron radiation, active media, and the Zeeman, Goldreich-Kylafis, and Hanle effects, as well as interactions between polarization and matter (like birefringence, Faraday rotation, or the Chandrasekhar-Fermi effect); (iii) observational methodology: on-sky geometry, influence of atmosphere and instrumental polarization, polarization statistics, and observational techniques for radio, optical, and $X/{\gamma}$ wavelengths; and (iv) science cases for astronomical polarimetry: solar and stellar physics, planetary system bodies, interstellar matter, astrobiology, astronomical masers, pulsars, galactic magnetic fields, gamma-ray bursts, active galactic nuclei, and cosmic microwave background radiation.