• Title/Summary/Keyword: burst pressure

Search Result 178, Processing Time 0.029 seconds

Impact of hydrogen on rupture behaviour of Zircaloy-4 nuclear fuel cladding during loss-of-coolant accident: a novel observation of failure at multiple locations

  • Suman, Siddharth
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.474-483
    • /
    • 2021
  • To establish the exclusive role of hydrogen on burst behaviour of Zircaloy-4 during loss-of-coolant accident transients, an extensive single-rod burst tests were conducted on both unirradiated as-received and hydrogenated Zircaloy-4 cladding tubes at different heating rates and internal overpressures. The visual observations of cladding tubes during bursting as well as post-burst are presented in detail to understand the effect of hydrogen concentration, heating rate, and internal pressure. Impact of hydrogen on burst parameters-burst stress, burst strain, burst temperature-during loss-of-coolant accident transients are compared and discussed. Rupture at multiple locations for hydrogenated cladding at lower internal pressure and higher heating rate is reported for the very first time. A novel burst criterion accounting hydrogen concentration in nuclear fuel cladding is proposed.

Finite Element Analyses for the Estimates of the Burst Pressures of the Pipes with Defects (결함이 있는 배관의 파열압력 예측을 위한 유한요소 해석기법)

  • Kang, Hye-Min;Oh, Chang-Sik;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.305-310
    • /
    • 2008
  • This paper provides the methods to estimate the burst pressures of the pipes with defects, based on finite element analyses. FE codes are frequently adopted for the simulations of the burst tests of the pipes with defects. However, those do not give the burst pressure directly. Because the post-processing should be followed; determination of the fracture strains in accordance with triaxialities, monitoring the strains of pipes, etc. In the present work, these efforts are implemented in the user subroutine UHARD within the general-purpose FE code, ABAQUS. Four fracture criterions are introduced to estimate the burst pressure of pipes, and a simple fracture strain estimate is also developed. FE analyses for the pipe with gouge and corrosion are performed, and the results are compared with the experiment results.

  • PDF

The Structural Integrity Evaluation of Composite Pressure Vessel Using Acoustic Emission (음향방출을 이용한 복합재 압력용기의 건전성 평가)

  • 이상호;최용규
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.2
    • /
    • pp.1-11
    • /
    • 1997
  • During hydroproof test of composite pressure vessel, acoustic emission signal was measured and analyzed to evaluate structural integrity of composite motor case. When pressure was held for 1 min. at constant pressure from low pressure level to high pressure level, the pattern of hit rate of good composite pressure vessel is increased with higher value than that of bad composite pressure vessel. This report also presents detection possibility of burst location approximately in the range of 25∼36% of burst pressure using energy rate. In case that it is difficult to detect burst location of composite motor case, it is possible to detect burst location, i.e. structurally weak location of composite pressure vessel with applying same pressure lower than maximum expected operating pressure(MEOP) repeatedly.

  • PDF

Burst pressure estimation of Alloy 690 axial cracked steam generator U-bend tubes using finite element damage analysis

  • Kim, Ji-Seok;Kim, Yun-Jae;Lee, Myeong-Woo;Jeon, Jun-Young;Kim, Jong-Sung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.666-676
    • /
    • 2021
  • This paper presents numerical estimation of burst pressures of axial cracked U-bend tubes, considering the U-bending process analysis. The validity of the FE simulations is confirmed by comparing with published experimental data. From parametric analyses, it is shown that existing EPRI burst pressure estimation equations for straight tubes can be conservatively used to estimate burst pressures of the U-bend tubes. This is due to the increase in yield strength during the U-bending process. The degree of conservatism would decrease with increasing the bend radius and with increasing the crack depth.

Burst Test and Finite Element Analysis for Failure Pressure Evaluation of Nuclear Power Plant Pipes (원전 배관 손상압력 평가를 위한 파열시험 및 유한요소해석)

  • Yoon, Min Soo;Kim, Sung Hwan;Kim, Taesoon
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.144-149
    • /
    • 2015
  • This study aims to quantitatively evaluate failure pressure of wall-thinned elbow under combined load along with internal pressure, by conducting real-scale burst test and finite element analysis together. For quantitative evaluation, failure pressure data was extracted from the real-scale burst test first, and then finite element analysis was carried out to compare with the test result. For the test, the wall-thinning defect of the extrados or intrados inside the center of 90-degree elbow was considered and the loading modes to open or close the specimen maintaining a certain load or displacement were applied. Internal pressure was applied until failure occurred. As a result, when the bending load was applied under the load control condition, the intrados of the defect was more affected by failure pressure than the extrados, and the opening mode was more vulnerable to failure pressure than the closing mode. When the bending load was applied under the displacement control, it was hardly affected by failure pressure though it was slightly different from the defect position. The result of the finite element analysis showed a similar aspect with the test. Moreover, when major factors such as material properties and pipeline thickness were calibrated to accurate values, the analytical results was more similar to the test results.

The Evaluation of Burst Pressure for Corroded Pipeline by Full Scale Burst Test (실배관 파열시험을 통한 부식배관의 파열압력 평가)

  • Kim, Yeong-Pyo;Baek, Jong-Hyeon;Kim, U-Sik;Go, Yeong-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.203-210
    • /
    • 2002
  • The transmission pipeline industry spends many millions of dollars annually performing inline inspections, excavating sites of possible corrosion, and repairing or replacing damaged sections of pipe. New criteria fur evaluation of the integrity of corroded pipe have been developed in recent years to help in controlling these costs. These new criteria vary widely in their estimates of integrity and the most appropriate criterion fur a given pipeline is net always clear. This paper presents an overview, comparison and evaluation of acceptability criteria for corrosion deflects in pipelines. By full scale burst tests, this paper has assessed the relative accuracy of each of theses criteria in predicting burst pressure. Many of the criteria appear to be excessively conservative and indicate that deflects must be repaired when none is needed, based upon burst test data.

The Evaluation of Burst Pressure for Corroded Weld in Gas Pipeline (가스배관 용접부위 부식에 대한 파열압력 평가)

  • Kim, Young-Pyo;Kim, Woo-Sik;Lee, Young-Kwang;Oh, Kyu-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.222-227
    • /
    • 2004
  • The failure assessment for corroded pipeline has been considered with the full scale burst test and the finite element analysis. The burst tests were conducted on 762 mm diameter, 17.5 mm wall thickness and API 5L X65 pipe that contained specially manufactured rectangular corrosion defect. The failure pressure for corroded pipeline was measured by burst testing and classified with respect to corrosion sizes and corroded regions - the body, the girth weld and the seam weld of pipe. Finite element analysis was carried out to derive failure criteria of corrosion defect on the pipe. A series of finite element analyses were performed to obtain a limit load solution for corrosion defects on the basis of burst test. As a result, the criteria for failure assessment of corrosion defect within the body, the girth weld and the seam weld of API 5L X65 gas pipeline were proposed.

  • PDF

Analysis of Tube Support Plate Reinforcement Effects on Burst Pressure of Steam Generator Tubes with Axial Cracks (증기발생기 전열관지지판의 축균열 파열억제 효과 분석)

  • Kang, Yong Seok;Lee, Kuk Hee;Kim, Hong Deok;Park, Jai Hak
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.168-173
    • /
    • 2015
  • A steam generator tubing is one of the main pressure boundary of the reactor coolant system in the nuclear power plants. Structural integrity refers to maintaining adequate margins against failure of the tubing. Burst pressure of a tube at tube support plate can be higher than that for a free-span tube because failure behaviors could be interfered from the tube support plate. Alternative repair criteria for out-diameter stress corrosion cracking indications in tubes to the drilled type tube support plate were developed, however, there are very limited information to the eggcrate type tube support plate. This paper discussed reinforcement effect of steam generator tube burst pressure with axial out-diameter stress corrosion cracking within an eggcrate type tube support plate. A series of tube burst tests were performed under the room temperature and it was found out that there is no significant but marginal effects.

Decrease of Burst Pressure used a Nozzle Closure and Ignition Characteristics for a Gas Generator (가스발생기용 노즐마개 파열압력 저감화에 따른 점화특성)

  • Cha, Hong-Seok;Oh, Seok-Jin;Park, Jae-Beom;Lee, Yeung-Jo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.217-220
    • /
    • 2010
  • This paper presents an achieving method of reducing maximum acceleration for the missile by decrease of burst pressure in a nozzle closure. The relation of notch shape and burst pressure for a nozzle closure is examined by experiment. In the point of maximum acceleration reduction for a missile, an improved nozzle closure effects well compared with that of a reference closure by ground burning test of a gas generator.

  • PDF

The Prediction of Structural Behavior for Composite Pressure Vessel with Changed Dome Shape (돔 형상 변화에 따른 복합재 압력용기의 구조 거동 예측)

  • Hwang, Tae-Kyung;Park, Jae-Byum;Kim, Hyung-Kun;Doh, Young-Dae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.288-292
    • /
    • 2008
  • Dome shape design method of filament wound (FW) composite pressure vessel, which can create various dome shape with fixed boss opening, was suggested. And, the performance indices (PV/W) for composite pressure vessel with same boss opening but different dome shape were investigated by finite element analysis (FEA) and hydro-test. The FEA showed good agreement with test results for burst pressure. Generally, as the dome shape of pressure vessel was changed to flat dome, the inner volume is increased and the burst pressure is decreased. In the case of above ${\rho}_o$=0.54, the performance index showed decreased value due to the low burst pressure. However, at ${\rho}_o$=0.35, the dome shape change brings not significant reduction of burst pressure and performance index.

  • PDF