• Title/Summary/Keyword: buried pipelines

Search Result 187, Processing Time 0.025 seconds

Finite Element Analysis on Polyethylene Gas Pipes under External Loadings (폴리에틸렌 가스배관의 외부 하중에 대한 유한요소 해석)

  • Kil, Seoog-Hee;Park, Kyo-Shik;Kim, Ji-Yoon
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.204-211
    • /
    • 2008
  • Polyethylene(PE) pipes have been widely used as they are easy to construct and suitable for economical efficient when they are compared with metal pipelines. This paper studied the effect of various external loadings on stress and deflection of the buried PE pipes using Finite Element Method(FEM). For this purpose, stresses of buried PE pipes were calculated according to the loading condition such as pipe types(pipe diameter $50{\sim}400mm$), burial depths($0.6{\sim}1.2m$) and internal pressures($0.4{\sim}4bar$). As a result, it was founded the effect and relation with each of loading conditions under the buried condition.

A Numerical Study on Safety Evaluation of Prefabricated Sewage-Pipe Plastic Foundation Based on Pipe Diameters and Buried Soil Depths (하수관거 직경과 심도를 고려한 하수관거 플라스틱 받침기초의 안전성 평가를 위한 해석연구)

  • Park, Rae-Jin;Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4322-4327
    • /
    • 2015
  • Improper backfill materials and compaction controls under pipelines have become one of the major causes of failure in many sewage pipeline systems. A study on backfill materials and compaction controls has been considered for a long time. However, structural supporters under the pipe were recently concerned because of pipeline repair and maintenance. This paper presents a prefabricated plastic foundation for supporting a sewage pipe system and increasing the performance function of the pipes. Several analytical models for the plastic foundations were investigated using finite-element program, ABAQUS, for checking safety. Comparing with the results of analyses, some of economic design sections based on the sizes of pipe diameters, 600mm, 700 and 600mm, were evaluated. These results could be applied to a pipeline system with a prefabricated plastic foundation with respect to pipe diameters and buried depths.

Green synthesis of silver nanoparticles to the microbiological corrosion deterrence of oil and gas pipelines buried in the soil

  • Zhi Zhang;Jingguo Du;Tayebeh Mahmoudi
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.355-366
    • /
    • 2023
  • Biological corrosion, a crucial aspect of metal degradation, has received limited attention despite its significance. It involves the deterioration of metals due to corrosion processes influenced by living organisms, including bacteria. Soil represents a substantial threat to pipeline corrosion as it contains chemical and microbial factors that cause severe damage to water, oil, and gas transmission projects. To combat fouling and corrosion, corrosion inhibitors are commonly used; however, their production often involves expensive and hazardous chemicals. Consequently, researchers are exploring natural and eco-friendly alternatives, specifically nano-sized products, as potent corrosion inhibitors. This study aims to environmentally synthesize silver nanoparticles using an extract from Lagoecia cuminoides L and evaluate their effectiveness in preventing biological corrosion of buried pipes in soil. The optimal experimental conditions were determined as follows: a volume of 4 ml for the extract, a volume of 4 ml for silver nitrate (AgNO3), pH 9, a duration of 60 minutes, and a temperature of 60 degrees Celsius. Analysis using transmission electron microscopy confirmed the formation of nanoparticles with an average size of approximately 28 nm, while X-ray diffraction patterns exhibited suitable peak intensities. By employing the Scherer equation, the average particle size was estimated to be around 30 nm. Furthermore, antibacterial studies revealed the potent antibacterial activity of the synthesized silver nanoparticles against both aerobic and anaerobic bacteria. This property effectively mitigates the biological corrosion caused by bacteria in steel pipes buried in soil.

Long Range Cylindrically Guided Ultrasonic Wave Technique for Inspection

  • Balasubramaniam, Krishnan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.4
    • /
    • pp.364-371
    • /
    • 2003
  • In this paper, a review of the current status, on the use of long range cylindrically guided wave modes, and their interaction with cracks and corrosion damage in pipe-like structures will be discussed. Applications of cylindrically guided ultrasonic wave modes have been developed for inspection of corrosion damage in pipelines at chemical plants, flow-accelerated corrosion damage (wall thinning) in feedwater piping, and circumferential stress corrosion cracks in PWR steam generator tubes. It has been demonstrated that this inspection technique can be employed on a variety of piping geometries (diameters from 1 in. to 3 ft, and wall thickness from 0.1 to 6 in.) and a propagation distance of 100 meters or more is sometimes feasible. This technique can also be used in the inspection of inaccessible or buried regions of pipes and tubes.

Study on The Estimation of Pipeline. Soil Interaction Force. during Longitudinal Permanent Ground Deformation (종방향 영구지반변형 발생시 관$\cdot$지반 상호작용력의 산정에 관한 연구)

  • Kim, Tae-Wook
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.170-175
    • /
    • 2003
  • The ASCE formula of pipeline' soil interaction force is the basis of semi-analytical relationship for buried pipelines subjected to longitudinal permanent ground deformation due to seismic induced liquefaction. However, since the ASCE formula has been developed based on the stiffness of non-liquefied region, it is needed to modify for the varied stiffness of liquefied region. With this object, the consideration of decreasing effect of soil stiffness in liquefied region is made: i.e. the spatial distributions of pipeline. soil interaction force in liquefied region. It means that the improved formula can reflect various patterns of permanent ground deformation more realistically. Through the comparative analyses using both the improved and ASCE formula, the applicability of the improved, the limitation of the existing formula and semi-analytical relationship are discussed.

  • PDF

The Field Test of a Mitigation Method from DC Subwaysystem for Underground Pipeline

  • Bae, Jeong-Hyo;Ha, Tae-Hyun;Ha, Yoon-Cheol;Lee, Hyun-Goo;Kim, Dae-Kyeong
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.308-310
    • /
    • 2007
  • The owner of underground metallic structures (gas pipeline, oil pipeline, water pipeline, etc) has a burden of responsibility for the corrosion protection in order to prevent big accidents like gas explosion, soil pollution, leakage and so on. So far, Cathodic Protection(CP) technology have been implemented for protection of underground systems. The stray current from DC subway system in Korea has affected the cathodic protection (CP) design of the buried pipelines adjacent to the railroads. In this aspect, KERI has developed a various mitigation method, drainage system through steel bar under the rail, a stray current gathering mesh system, insulation method between yard and main line, distributed ICCP(Impressed Current Cathodic System), High speed response rectifier, restrictive drainage system, Boding ICCP system. We installed the mitigation system at the real field and test of its efficiency in Busan and Seoul, Korea. In this paper, the results of field test, especially, distributed ICCP are described.

Study on The Estimation of Pipeline.Soil Interaction Force during Longitudinal Permanent Ground Deformation (종방향 영구지반변형 발생시 관.지반 상호작용력의 산정에 관한 연구)

  • 김태욱;임윤묵;김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.114-122
    • /
    • 2002
  • The ASCE formula of lifeline.soil interaction force is the basis of semi-analytical relationship for buried pipelines subjected to longitudinal permanent ground deformation due to seismic induced liquefaction. However, since the ASCE formula has been developed based on the stiffness of non-liquefied region, it is needed to modify for the varied stiffness of liquefied region. With this object, the consideration of decreasing effect of soil stiffness in liquefied region is made: i.e. the spatial distributions of pipeline-soil interaction force in liquefied region. It means that the improved formula can reflect various patterns of permanent ground deformation more realistically. Through the comparative analyses using both the improved and ASCE formula, the applicability of the improved and the limitation of the ASCE formula and semi-analytical relationship are discussed. Also, relative influences of various parameters are evaluated for the clarification of behavior of pipeline subjected to longitudinal permanent ground deformation due to liquefaction.

  • PDF

Numerical analysis results of the cathodic protection for the underground steel pipe by anode installation method

  • Jeong, Jin-A;Choo, Yeon-Gil;Jin, Chung-Kuk;Park, Kyeong-Wan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1212-1216
    • /
    • 2014
  • This study aims to find out the best anode location for buried pipelines. Numerical simulation program known as CATPRO (Elsyca, Belgium) were used for confirming the best location of anodes and the effects of impressed current cathodic protection system. Applied conditions for numerical simulation were similar to on-site environmental conditions for optimal application of cathodic protection system. Used criterion of cathodic protection was NACE SP 0169, which describes that minimum requirement for cathodic protection is -850mV vs. CSE. Various layouts for anodes' installation were applied, which were distance between anodes, anode installation location, and applied current. The areas where cathodic protection potential was lower than -850mV vs. CSE was limited up to 50m from anode installation locations. It was founded numerical analysis obtain cost-effective and efficient cathodic protection methods before design and application the impressed cathodic protection system to on-site environment.

The Effects of cathodic protection on fracture toughness of buried gas pipeline (매설가스배관의 음극방식이 배관의 파괴인성에 미치는 영향)

  • Kim, Cheol-Man;Kim, Woo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.573-578
    • /
    • 2001
  • For the corrosion protect ion of the natural gas transmission pipelines, two methods are used, cathodic protection and coating technique. In the case of cathodic protection, defects are embrittled by occurring hydrogen at the crack tip or material surface. It is however very important to evaluate whether cracks in the embrittled area can grow or not, especially in weld metal. In this work, on the basis of elastic plastic fracture mechanics, we performed CTOD test ing with varying test conditions, such as the potential and current density. The CTOD of the base steel and weld metal showed a strong dependence of the test conditions. The CTOD decreased with increasing cathodic potential and current density. The morphology of the fracture surface showed quasi-cleavage. Hydrogen introduced fractures, caused by cathodic overprotection.

  • PDF

Coating defect survey of underground buried pipelines (지하매설배관의 피복손상부 탐측에 관한 연구)

  • Ha, Tae-Hyun;Bae, Jeong-Hyo;Lee, Hyun-Goo;Kim, Dae-Kyeong;Ha, Yoon-Cheol;Park, Kyung-Wha
    • Proceedings of the KIEE Conference
    • /
    • 2005.07e
    • /
    • pp.61-63
    • /
    • 2005
  • In present, most of underground metallic structures, especially gas pipeline, have adopted in order to protect against a corrosion. If a coating defect is be on the surface of gas pipeline, the pitting corrosion is occur normally. So, in the corrosion field, investigation of coating defect is very important activity. In this paper, DCVG(Direct Current Voltage Gradient) method which is can detect a coating defect of gas pipeline is introduced. And also, the assesment of coating defect position according to the position of temporary anode of ICCP(Impresed Current Cathodic Protection) system is presented.

  • PDF