• Title/Summary/Keyword: burial depth

Search Result 125, Processing Time 0.026 seconds

A Study on the Method to Minimize Measuring Burial Depth Error for Submarine Cable (해저케이블 매설심도 측정오차 저감 방법에 관한 연구)

  • An, Yong-Ho;Kim, Yong-Hak;Han, Jeong-Yeol;Lee, You-Jin;Han, Byoung-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.329-334
    • /
    • 2012
  • The distribution submarine cables are normally used for power supply at island, which are mostly installed in the southern coast of KOREA, and partially installed in the west coast and Jeju-Island. There are two way of submarine cable burying system, buried and unburied type. Since 2003, KEPCO is entirely being constructing the distribution submarine cable by buried type. In this case, 'burial depth' is key index for evaluating the suitability of the buried situation. Therefore, the measurement accuracy of 'burial depth' is a big issue for burying system in the distribution submarine cable. This paper demonstrates the measurement error of burial depth that is affected by electrical factor such as grounding type of submarine cable in case of magnetic field detection method, and indicates the method to reduce the measurement error in buried type of distribution submarine cable system.

Influence of burial conditions on the seepage characteristics of uranium bearing loose sandstone

  • Quan Jiang;Mingtao Jia;Yihan Yang;Qi Xu;Chuanfei Zhang;Xiangxue Zhang;Meifang Chen
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1357-1371
    • /
    • 2024
  • To investigate the influence of different burial conditions on the seepage characteristics of loose sandstone in the leaching mining of sandstone uranium ore, this study applied different ground pressures and water pressures to rock samples at different burial depths to alter the rock's seepage characteristics. The permeability, pore distribution, and particle distribution characteristic parameters were determined, and the results showed that at the same burial depth, ground pressure had a greater effect on the reduction in permeability than water pressure. The patterns and mechanisms are as follows: under the influence of ground pressure, increasing the burial depth compresses the pores in the rock samples, decreases the proportion of effective permeable pores, and causes particle fragmentation, which blocks pore channels, resulting in a decrease in permeability. Under the influence of water pressure, increasing the burial depth expands the pores but also causes hard clay particles to decompose and block pore channels. As the burial depth increases, the particles eventually decompose completely, and the permeability initially decreases and then increases. In this experiment, the relationships between permeability and the proportion of pores larger than 0.15 ㎛ and the proportion of particles smaller than 59 ㎛ were found to be the most significant.

Mathematical Description of Seedling Emergence of Rice and Echinochloa species as Influenced by Soil burial depth

  • Kim Do-Soon;Kwon Yong-Woong;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.4
    • /
    • pp.362-368
    • /
    • 2006
  • A pot experiment was conducted to investigate the effects of soil burial depth on seedling emergences of rice (Oryza sativa) and Echinochloa spp. and to model such effects for mathematical prediction of seedling emergences. When the Gompertz curve was fitted at each soil depth, the parameter C decreased in a logistic form with increasing soil depth, while the parameter M increased in an exponential form and the parameter B appeared to be constant. The Gompertz curve was combined by incorporating the logistic model for the parameter C, the exponential model for the parameter M, and the constant for the parameter B. This combined model well described seedling emergence of rice and Echinochloa species as influenced by soil burial depth and predicted seedling emergence at a given time after sowing and a soil burial depth. Thus, the combined model can be used to simulate seedling emergence of crop sown in different soil depths and weeds present in various soil depths.

Estimation of burial depth for arctic offshore pipelines by an ice scour model (빙쇄굴 모델에 의한 극지 해저 파이프라인의 매설깊이 산정)

  • 윤기영;최경식
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.1-10
    • /
    • 1997
  • The interaction of ground ice features with underlying seabed is one of the major considerations in the design of Arctic pipeline systems. Regarding the development of offshore gas field near Sakhalin Island, which is an ice-infested area, in this paper an ice scour model to determine the burial depth of Arctic offshore pipeline is studied. Using a simplified ice-seabed interaction process, ice scour depth is easily estimated. This nonlinear numerical model can simulate the scouring process for various enviromental parameters such as ice mass, incoming velocity, soil strength. This study also deals with interaction forces during the scouring process in sloping seabed conditions and discusses the ice loads that are transmitted through the seabed soil.

  • PDF

Factor analysis of subgrade spring stiffness of circular tunnel

  • Xiangyu Guo;Liangjie Wang;Jun Wang;Junji An
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.229-237
    • /
    • 2024
  • This paper studied the subgrade spring stiffness and its influencing factors in the seismic deformation method of circular tunnel. Numerical calculations are performed for 3 influencing factors: stratum stiffness, tunnel diameter and burial depth. The results show that the stratum stiffness and tunnel diameter have great influence on the subgrade spring stiffness. The subgrade spring stiffness increases linearly with stratum stiffness increasement, and decreases with the tunnel diameter increasement. When the burial depth ratio (burial depth/tunnel diameter) exceeds to 5, the subgrade spring stiffness has little sensitivity to the burial depth. Then, a proposed formula of subgrade spring stiffness for the seismic deformation method of circular tunnel is proposed. Meanwhile, the internal force results of the seismic deformation method are larger than that of the dynamic time history method, but the internal force distributions of the two methods are consistent, that is, the structure exhibits elliptical deformation with the largest internal force at the conjugate 45° position of the circular tunnel. Therefore, the seismic deformation method based on the proposed formula can effectively reflect the deformation and internal force characteristics of the tunnel and has good applicability in engineering practice.

Effect of Depth of Tuber Burial, Soil Temperature, and Soil Moisture on Tuber Sprouting of Eleocharis Kuroguwai Ohwi (올방개 괴경(塊莖)의 맹아(萌芽)에 미치는 매몰심(埋沒深), 토양온도(土壤溫度) 및 수분조건(水分條件)의 영향(影響))

  • Chun, J.C.;Shin, H.S.
    • Korean Journal of Weed Science
    • /
    • v.14 no.1
    • /
    • pp.49-55
    • /
    • 1994
  • A study was conducted to determine the effect of depth of burial, soil temperature and/or moisture on tuber sprouting of E, kuroguwai. Tubers were evenly distributed in the upper 30cm of soil. Tuber weight increased as depth of tuber formed increased. No dormancy in newly formed tubers was found, whereas mature tubers were dormant. When new tubers were subjected both to continuous $5^{\circ}C$ and to gradual decreasing temperatures regimes ranged from 20 to $1^{\circ}C$ for 30 days, the tubers remained non-dormant. Viability of tubers was reduced when buried at 5cm depth in dry and moist soil conditions, but no reduction was obtained when buried at 25cm depth, regardless of soil moisture conditions employed. Percent sprouting of tubers buried at 25cm depth increased with increasing duration of burial in three soil moisture conditions studied, wherease in dry and moist conditions percent sprouting of tubers buried at 25cm depth increased by 60-day burial and thereafter decreased. In submerged condition, tuber sprouting was greater when buried at 5cm depth than when buried at 25cm depth, and increased as duration of burial increased at the both depths.

  • PDF

Experimental Assessment for the Effect of Burial Depth on the Formation of Underground Cavities and Ground Cave-ins by Damaged Sewer Pipes (하수관 손상으로 인한 지하공동 및 지반함몰 발생에 대한 하수관 매립심도 영향의 실험적 평가)

  • Kwak, Tae-Young;Chung, Choong-Ki;Kim, Joonyoung;Lee, Minho;Woo, Sang-Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.37-49
    • /
    • 2019
  • In order to analyze the effect of burial depth on the generation of ground cavities and cave-ins, a series of model experiments with different height of model ground were performed. Digital images of the model ground were captured to evaluate the internal deformation of the model grounds by adopting the PIV (Particle Image Velocimetry) technique. Additionally, the vertical displacement at the surface, the size of the cavity, and the weight of the discharged soil were measured in each test. The results indicate that the model ground with low burial depth, which does not satisfy the criterion, was more vulnerable to ground cavities and cave-ins than the model ground with high burial depth.

A Study on Heat Loss from Offshore Pipelines Depending on the Thermal Conductivity of Backfills and Burial Depth

  • Park, Dong-Su;Seo, Young-Kyo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Subsea pipelines are designed to transport mixtures of oil, gas, and their associated impurities from the wellhead that can have temperatures as high as $100^{\circ}C$, while the external temperature can be as low as $5^{\circ}C$. Heat can be lost from the subsea pipeline containing high-temperature fluid to the surrounding environment. It is important that the pipeline is designed to ensure that the heat loss is small enough to maintain flow and avoid the unwanted deposition of hydrate and wax, which occurs at a critical temperature of approximately $40^{\circ}C$. Therefore, it is essential to know the heat loss of subsea pipelines under various circumstances. This paper presents a comparison between numerical analyses and existing theoretical formulas for different backfills and burial depth.

A scientific approach to estimate the safe depth of burial of submarine pipelines against wave forces for different marine soil conditions

  • Neelamani, S.;Al-Banaa, K.
    • Ocean Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.9-34
    • /
    • 2013
  • Submarine pipelines encounter significant wave forces in shallow coastal waters due to the action of waves. In order to reduce such forces (also to protect the pipe against anchors and dropped objects) they are buried below the seabed. The wave force variation due to burial depends on the engineering characteristics of the sub soil like hydraulic conductivity and porosity, apart from the design environmental conditions. For a given wave condition, in certain type of soil, the wave force can reduce drastically with increased burial and in certain other type of soil, it may not. It is hence essential to understand how the wave forces vary in soils of different hydraulic conductivity. Based on physical model study, the wave forces on the buried pipeline model is assessed for a wide range of wave conditions, for different burial depths and for four types of cohesion-less soils, covering hydraulic conductivity in the range of 0.286 to 1.84 mm/s. It is found that for all the four soil types, the horizontal wave force reduces with increase in depth of burial, whereas the vertical force is high for half buried condition. Among the soils, well graded one is better for half buried case, since the least vertical force is experienced for this situation. It is found that uniformly graded and low hydraulic conductivity soil attracts the maximum vertical force for half buried case. A case study analysis is carried out and is reported. The results of this study are useful for submarine buried pipeline design.

An Experimental Study for Analysis of the Self-Burial of Pipelines with Spoilers in Current

  • Kang, Min Joon;Lee, Seung Jae;Hwang, Jae Hyuk;Jo, Hyo Jae
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.22-27
    • /
    • 2016
  • This experimental study deals with the mechanism of spoilers that cause scouring around pipelines. The design methodology was applied to spoilers for accelerating pipelines that undergo self-burial into the sand-bed and evaluated using approaching experimental analysis. The experimental study was conducted to investigate the self-burial ability of submarine pipelines with two types of sand-bed models: silt and sand. Spoilers of different heights were attached to the top of the pipeline for each experiment case. The relationship between the relative scour depth and spoiler height was evaluated by applying different flow velocities and sand diameters and comparative analysis was performed with values obtained from similarity experiments and theory. The experimental study will be useful in establishing a database for the design of spoilers.