• Title/Summary/Keyword: bulk structure

Search Result 851, Processing Time 0.033 seconds

Effect of Beating and Water Impregnation on Fiber Swelling and Paper Properties (고해와 수침시간이 섬유의 팽윤과 종이 물성에 미치는 영향)

  • Choi, Eun-Yeon;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.6
    • /
    • pp.88-95
    • /
    • 2013
  • Effects of beating and water immersion time on fiber swelling and paper properties were elucidated for the fundamental study of producing high bulk paper. Chemical pulps were beaten for various freeness and the beaten pulp was immersed in water up to 24 hours. Fiber swelling was evaluated by measuring water retention value (WRV). It was found that fiber swelling, bulk and paper strength were quickly changed at the initial stage of beating. Immersion in water did not significantly increase WRV, paper density and strength, implying that soaking in water alone could not effectively swell fiber wall. In order to swell further, hydrogen bonds between fibrils in fiber wall and hence fiber wall structure shall be broken by mechanical force during beating.

Development of Electric Hoist Device for Rack in Tobacco Bulk curing Barn (담배 벌크건조기의 래크용 전동발달기 장치 개발)

  • 김용암;류명현;백종운
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.23 no.1
    • /
    • pp.90-93
    • /
    • 2001
  • In order to save hanging labor hours and reduce work intensity for bulk curing of the flue-cured tobacco, and electric hoist was developed. It consists of a pair of square steel frames with side plates and rolling casters to move back and forth on the second tire of bulk barn, and wire rope type lift was attached to the beneath of its top center. The lift driven by DC motor could be controlled by operating switch with one limit switch and control box, and a scissors shaped gripper was deviced to grip tobacco rack to the end of wire rope. As the results of experiments with electric hoist, labor hours for hanging could be saved by 30 to 40% as compared with those in conventional method. With simple and light structure, it was possible for even woman to load the harvested tobacco, and it could be recommended for farmers to use this device with reasonable price.

  • PDF

Correlation between Structures and Magnetism in Iron: Ferromagnetism and Antiferromagnetism

  • Lee, Dong-Kook;Hong, Soon-Cheol
    • Journal of Magnetics
    • /
    • v.12 no.2
    • /
    • pp.68-71
    • /
    • 2007
  • Even a pure bulk Fe has a complicated magnetic phase and its magnetism is still needed to be clarified. In this study we investigated the magnetism of bcc and fcc bulk Fe with total energy calculations as functions of atomic volume. The full-potential linearized augmented plane wave method was adopted within a generalized gradient approximation. The ground state of bulk Fe is confirmed to be of ferromagnetic (FM) bcc. For fcc structured Fe an antiferromagnetic (AFM) state is more stable compared to FM states which exist as low spin and high spin states. The stable AFM states were found to accompany a tetragonal distortion, while the FM states remained in a cubic symmetry. At an expanded lattice constant a high spin FM state was calculated to be able to be stabilized with significant enhanced magnetic moment compared to the value of the ground state, bcc FM.

Comparison Analysis on Requirements of Structural Members by Application of the Harmonized Common Structural Rules (통합공통구조규칙(CSR-H) 적용에 따른 구조 부재 요구치의 비교 분석)

  • Sung, Chi Hyun;Lee, Seung-Keon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.3
    • /
    • pp.265-274
    • /
    • 2015
  • International organizations and classification societies established rules and regulations to which shipbuilders and ship operators should comply during design, construction, even operation keeping from hazard to life of crews and ocean environment. Hence, rules and regulations could be guidelines for design and construction of ship sometimes. In practical wise, ship structure designers be predisposed to design lightest and easy-to-product structures which satisfy rules and regulations. Therefore, changes of rules and regulations are remarkably important issue to related industries. In 2006, IACS established and released Common Structural Rules for Bulk Carrier and Common Structural Rules for Double Hull Oil Tanker. These CSRs are consolidated and unified rules of class society's rules. But these two rules are different from each other. IACS has plan to release unified rule of two ship type called Harmonized Common Structural Rule for Bulk Carriers and Oil Tankers. This new rule will be effective from July 2015. Hence, bulk carrier and double hull oil tanker whose contract date is on and thereafter July 2015 should be complied with CSR-H. Therefore, it is highly important to be aware of consequences and cause of consequences with respect to CSR-H. The object of this research is to compare requirements of structure scantling in way of midship area for selected target ship according to CSRs and CSR-H and to analysis cause of deviation between two rules.

Modified electrical conductivity test method for evaluation concrete permeability

  • Pilvar, Amirreza;Ramezanianpour, Ali Akbar;Rajaie, Hosein
    • Computers and Concrete
    • /
    • v.16 no.6
    • /
    • pp.865-880
    • /
    • 2015
  • Standard test method for bulk electrical conductivity (ASTM C1760) provides a rapid indication of the concrete's resistance to the penetration of chloride ions by diffusion. In this paper a new approach for assessing the bulk electrical conductivity of saturated specimens of hardened concrete is presented. The test involves saturating concrete specimens with a 5 M NaCl solution before measuring the conductivity of the samples. By saturating specimens with a highly conductive solution, they showed virtually the same pore solution conductivity. Different concrete samples yield different conductivity primarily due to differences in their pore structure. The feasibility of the method has been demonstrated by testing different concrete mixtures consisting ordinary and blended cement of silica fume (SF) and calcined perlite powder (CPP). Two standard test methods of RCPT (ASTM C1202) and Bulk Conductivity (ASTM C1760) were also applied to all of the samples. The results show that for concretes containing SF and CPP, the proposed method is less sensitive towards the variations in the pore solution conductivity in comparison with RCPT and Bulk Conductivity tests. It seems that this method is suitable for the assessment of the performance and durability of different concretes containing supplementary cementitious materials.

Optimization of the Lowry Method of Protein Precipitation from the H. influenzae Type b Conjugate Vaccine Using Deoxycholic Acid and Hydrochloric Acid

  • Kim, Hyun-Sung;Kim, Sang-Joon;Kim, Hui-Jung;Kim, Han-Uk;Ahn, Sang-Joem;Hur, Byung-Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.215-222
    • /
    • 2006
  • The Lowry method was used in this study to measure protein in Haemophilus influenzae type b (Hib) conjugate vaccines (polyribosylibitol phosphate-tetanus toxoid; PRP-TT) using deoxycholic acid (DOC) to induce protein precipitation. Trichloroacetic acid (TCA) did not induce precipitation adequately from the Hib conjugate bulk and the freeze-dried Hib conjugate product. Its yield was approximately 50%. The matrix structure of Hib conjugate inhibits precipitation by TCA. Although the Lowry method can be carried out without precipitation in Hib conjugate bulk when no residual impurities (adipic acid dihydrazide [ADH], 1-ethyl-3-(3-dimethylamino-propyl) carbodiimide-HCI [EDAC], phenol and cyanogens bromide [CNBr], etc.) are present, it cannot be used for Hib conjugate products that contain sucrose 8.5%, because 8.5% concentration of sucrose enhanced the protein concentration. DOC- and HCl-induced precipitation is an alternative method for evaluating the protein content of the Hib conjugate bulk and the Hib conjugate product. The precipitation was optimal with a final concentrate of 0.1% for DOC at $4^{\circ}C$ and pH 2. This Lowry method, using DOC/HCI precipitation to induce protein precipitation, was confirmed a consistent, reproducible, and valid test for proteins in Hib conjugate bulk and its freeze-dried product.

Optimal design of an Wire-woven Bulk Kagome using taguchi method (다구찌법을 이용한 WBK(Wire-woven Bulk Kagome)의 최적설계)

  • Choi, Ji-Eun;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.13-19
    • /
    • 2008
  • A Wire-woven Bulk Kagome (WBK) is the new truss type cellular metal fabricated by assembling the helical wires in six directions. The WBK seems to be promising with respect to morphology, fabrication cost, and raw materials. In this paper, first, the geometric and material properties are defined as the main design parameters of the WBK considering the fact that the failure of WBK is caused by buckling of truss elements. Taguchi approach was used as statistical design of experiment(DOE) technique for optimizing the design parameters in terms of maximizing the compressive strength. Normalized specific strength is constant regardless of slenderness ratio even if material properties changed, while it increases gradually as the strainhardening coefficient decreases. Compressive strength of WBK dominantly depends on the slenderness ratio rather than one of the wire diameter, the strut length. Specifically the failure of WBK under compression by elastic buckling of struts mainly depended on the slenderness ratio and elastic modulus. However the failure of WBK by plastic failed marginally depended on the slenderness ratio, yield stress, hardening and filler metal area.

  • PDF

Mechanical Behaviors under Compression in Wire-Woven Bulk Kagome Truss PCMs (I) - Upper Bound Solution with Uniform Deformation - (벌크형 와이어직조 카고메 트러스 PCM의 압축거동 (I) - 균일 변형 상계해 -)

  • Hyun, Sang-Il;Choi, Ji-Eun;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.694-700
    • /
    • 2007
  • Recently, a new cellular metal, WBK(Wire woven Bulk Kagome) has been introduced. WBK is fabricated by assembling metal wires in six directions into a Kagome-like truss structure and by brazing it at all the crossings. Wires as the raw material are easy to handle and to attain high strength with minimum defect. And the strength and energy absorption are superior to previous cellular metals. Therefore, WBK seems to be promising once the fabrication process for mass production is developed. In this paper, an upper bound solution for the mechanical properties of the bulk WBK under compression is presented. In order to simulate uniform behavior of WBK consisted of perfectly uniform cells, a unit cell of WBK with periodic boundary conditions is analyzed by the finite element method. In comparison with experimental test results, it is found that the solution provides a good approximation of the mechanical properties of bulk WBK cellular metals except for Young's modulus. And also, the brazing joint size does not have any significant effect on the properties with an exception of an idealized thin joint.

Micro-EDM Feasibility and Material Properties of Hybrid Ti2AlC Ceramic Bulk Materials (하이브리드 Ti2AlC 세라믹 소결체의 재료특성 및 Micro-EDM 유용성 연구)

  • Jeong, Guk-Hyun;Kim, Kwang-Ho;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.301-306
    • /
    • 2014
  • Titanium alloys are extensively used in high-temperature applications due to their excellent high strength and corrosion resistance properties. However, titanium alloys are problematic because they tend to be extremely difficult-to-cut material. In this paper, the powder synthesis, spark plasma sintering (SPS), bulk material characteristics and machinability test of hybrid $Ti_2AlC$ ceramic bulk materials were systematically examined. The bulk samples mainly consisted of $Ti_2AlC$ materials with density close to theoretical value were synthesized by a SPS method. Random orientation and good crystallization of the $Ti_2AlC$ was observed at $1100^{\circ}C$ for 10 min under SPS sintering conditions. Scanning electron microscopy results indicated a homogeneous distribution and nano-laminated structure of $Ti_2AlC$ MAX phase. The hardness and electrical conductivity of $Ti_2AlC$ were higher than that of Ti 6242 alloy at sintering temperature of $1000^{\circ}C{\sim}1100^{\circ}C$. Consequently, the machinability of the hybrid $Ti_2AlC$ bulk materials is better than that of the Ti 6242 alloy for micro-EDM process of micro-hole shape workpiece.

Mechanical Properties of Synthesized Nano Laminating $Ti_3SiC_2$ by Reaction Press Sintering (반응 가압 소결 방법으로 합성된 nano laminating $Ti_3SiC_2$의 기계적 특성)

  • 황성식;박상환;김찬묵
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.396-400
    • /
    • 2003
  • A new synthesis process for nano laminating Ti$_3$SiC$_2$ has been developed using TiCx (x=0.67) and Si powder as starting materials by a reaction hot pressing. Bulk Ti$_3$SiC$_2$ was fabricated using a green body consisting of TiCx and Si by a hot pressing under the pressures of 25 MPa at 1420-1550 $^{\circ}C$ for 90 min. The synthesized Ti$_3$SiC$_2$ was consisting of only TiCx and Ti$_3$SiC$_2$. The relative density of sintered bulk Ti$_3$SiC$_2$ was increased as the hot pressing temperature was increased, which was mainly due to the increase in TiCx contents in synthesized Ti$_3$SiC$_2$. The synthesized Ti$_3$SiC$_2$ bulk was consisted of nano sized lamella structure of 20-100 nm in thickness. It was found that TiCx particles in Ti$_3$SiC$_2$ would increase the 3-point bending strength of synthesized Ti$_3$SiC$_2$ bulk. The maximum 3-P. bending strength of synthesized Ti$_3$SiC$_2$ bulk was more than 800 MPa. The Vickers hardness of synthesized Ti$_3$SiC$_2$bulk was as low as 5 Gpa, which was decreased with the indentation load. The quasi-plastic deformation behaviors were observed around indentation mark on Ti$_3$SiC$_2$.

  • PDF