• Title/Summary/Keyword: bulk specific

Search Result 233, Processing Time 0.028 seconds

Cancer stem cell metabolism: target for cancer therapy

  • Chae, Young Chan;Kim, Jae Ho
    • BMB Reports
    • /
    • v.51 no.7
    • /
    • pp.319-326
    • /
    • 2018
  • Increasing evidence suggests that cancer stem cell (CSC) theory represents an important mechanism underlying the observed failure of existing therapeutic modalities to fully eradicate cancers. In addition to their more established role in maintaining minimal residual disease after treatment and forming the new bulk of the tumor, CSCs might also critically contribute to tumor recurrence and metastasis. For this reason, specific elimination of CSCs may thus represent one of the most important treatment strategies. Emerging evidence has shown that CSCs have a different metabolic phenotype to that of differentiated bulk tumor cells, and these specific metabolic activities directly participate in the process of CSC transformation or support the biological processes that enable tumor progression. Exploring the role of CSC metabolism and the mechanism of the metabolic plasticity of CSCs has become a major focus in current cancer research. The targeting of CSC metabolism may provide new effective therapies to reduce the risk of recurrence and metastasis. In this review, we summarize the most significant discoveries regarding the metabolism of CSCs and highlight recent approaches in targeting CSC metabolism.

Effects of Extrusion Conditions on the Physicochemical Properties of Extruded Red Ginseng

  • Gui, Ying;Gil, Sun-Kuk;Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.3
    • /
    • pp.203-209
    • /
    • 2012
  • The effects of variable moisture content, screw speed and barrel temperature on the physicochemical properties of red ginseng powder extrudates were investigated. The raw red ginseng powders were processed in a co-rotating intermeshing twin-screw extruder. Primary extrusion variables were feed moisture content (20 and 30%), screw speed (200 and 250 rpm) and barrel temperature (115 and $130^{\circ}C$). Extruded red ginseng showed higher crude saponin contents (6.72~7.18%) than raw red ginseng (5.50%). Tested extrusion conditions did not significantly affect the crude saponin content of extrudates. Increased feed moisture content resulted in increased bulk density, specific length, water absorption index (WAI), breaking strength, elastic modulus and crude protein content and decreased water solubility index (WSI) and expansion (p<0.05). Increased barrel temperature resulted in increased total sugar content, but decreased reducing sugar content in the extrudate (p<0.05). Furthermore, increased barrel temperature resulted in increased amino acid content and specific length and decreased expansion and bulk density of extrudates only at a higher feed moisture content. The physicochemical properties of extrudates were mainly dependent on the feed moisture content and barrel temperature, whereas the screw speed showed a lesser effect. These results will be used to help define optimized process conditions for controlling and predicting qualities and characteristics of extruded red ginseng.

Utilization of Fly Ash in Asphaltic Concrete Mixtures

  • Min, Jeong-Ki
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42
    • /
    • pp.85-91
    • /
    • 2000
  • Dwindling supplies and increasing costs of conventional highway materials used in road construction as well as concerns over shrinking landfill spaces prompt researchers to investigate the use of waste products, such as fly ash, as substitute materials in highway construction. The highway industry is capable of utilizing waste materials in large quantities if their effect on pavement performance proves to be technically, economically and environmentally satisfactory. This research examines the effects of fly ash when used as partial replacement of aggregate in asphaltic concrete mixtures. And measuring the effect of fly ash on bulk specific gravity, air void, indirect tensile strength (ITS) under dry and wet conditioning as well as the tensile strength ratio (TSR) of asphaltic concrete mixture. The results indicated that asphaltic concrete mixtures containing 2% and 5% fly ash produced about the same TSR value as control mixture. And all of the mixtures met the minimum ITS and TSR requirements established by the South Carolina Department of Transportation (SC DOT) for Type 1A surface courses. At this point and with this limited study, these asphaltic concrete mixtures is recommended in several applications such as parking lot, secondary roads and driveways.

  • PDF

Bloating Mechanism of Artificial Lightweight Aggregate for Recycling the Waste Glass (폐유리를 재활용한 인공경량골재의 발포기구)

  • Kang, Shin-Hyu;Lee, Ki-Gang
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.445-449
    • /
    • 2010
  • The purpose of this study is to improve recycling rate of the waste glasses by investigating bloating mechanism. In this study, we use waste glass(W/G) and hard clay(H/C) as raw materials. The artificial lightweight aggregates were formed by plastic forming($\phi$=10 mm) and sintered by fast firing method at different temperatures(between 700 and $1250^{\circ}C$). The physical properties of the aggregates such as bulk specific gravity, adsorption and microstructure of surface and cross-section are investigated with the sintering temperature and rate of W/G-H/C contents. As the result of the bulk specific gravity graphs, we can found out the inflection point at content of W/G 60 wt%. From the microstructure images, we considered the artificial lightweight aggregates content of W/ G over 60wt% are distributed numerous micro-pores by organic oxidation without Black Core and the artificial lightweight aggregates of W/G below 60 wt% are distributed macro-pores with Black Core.

The Characterization of Metal Silicon and Compacts for the Nitridation (질화반응용 금속규소 및 그 Compacts의 Characterization(Densification of Silocon Nitride 1보))

  • 박금철;최상욱
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.3
    • /
    • pp.211-216
    • /
    • 1983
  • This work aims at characterizing silicon grains and its compacts. In order to remove iron silicon grains were washed with 5N hydrochloride at 60-7$0^{\circ}C$ for 170 hrs, and then followed the chemical analysis by atomic absorption spectrophotometer X-ray diffraction analysis SEM observation and specific surface area determination by B. E. T. Mixtures of graded silicon particles with two or three different sizes were made into packings by mechanical vibration. The mixtures were used to make compacts with 10 mm in diameter and 70mm in length by isostatically pressing at 1, 208 kg/$cm^2$ (20 kpsi) and 4, 255kg/$cm^2$ (60 kpsi) respectively. Bulk densities of packings and compacts were measured. A slip made of magnesium nitrate solution and fine silicon particles was spray-dried and then decomposed at 30$0^{\circ}C$ for the purpose of coating the uniform layer of magnesium oxide on the surface of particles. The results obtained are as follows: (1) About two thirds of iron content could be removed from silicon by washing silicon powders with hydrochloride. (2) Uniform layer of magnesium oxide on the surface of silicon could be prepared by spray-drying suspension and by decomposing it. (3) B. E. T. specific surface area of fine silicon particles was 2, 826.753$m^3$/kg. (4) In the binary system with two sizes of 40-53$\mu\textrm{m}$ particles and <10$\mu\textrm{m}$ particles the maximum bulk density of packing was 55% of theoretical value and that of compacts made at the pressure of 4, 255 kg./$cm^2$ (60 kpsi) was 73% of theoretical value. (5) In the ternary system with three sizes the maximum bulk density of packing was 1.43 g/$cm^3$and that of compacts was 1.80g/$cm^3$which is equivalent to 77.6% of theoretical value. The composition of the closest compact was consisted of 50% of 40-53$\mu\textrm{m}$ particles 20% of 10-30$\mu\textrm{m}$ particles and 30% of <10$\mu\textrm{m}$ parti-cles.

  • PDF

The Effect of Structural Characteristics of Selected Wool Fabrics on Mechanical and Thermal Properties (직물의 구성인자가 보온성에 미치는 영향)

  • Jun, Byung-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.1
    • /
    • pp.5-11
    • /
    • 2006
  • This study was performed to determine the effect of structural characteristics of selected wool fabrics on mechanical and thermal properties. 52 wool fabrics, including 18 plain woven fabrics and 34 twill and satin woven fabrics were used as samples woven with various weft density for the study. Several physical characteristics such as mechanical properties, keeping warmth ratio of wool fabrics were measured. Data analyses including 1) analysis of tactile and thermal comfort sensation were performed. the following were obtained from the results: The main factors affecting keeping warmth ratio were thickness and bulk density. The keeping warmth ratio of samples increased with increasing thickness and decreasing bulk density of samples. In addition, coefficient of friction of the samples increased with keeping warmth ratio of samples. The above results show that wearing sensation and comfort properties of fabrics are changed depending on the end-use, and thus, above results can be used to manufacture of fabrics for specific end-use with high comfort properties.

  • PDF

Phase Equilibrium of the Carbon Dioxide and Methane Hydrate in Silica Gel Pores and Thermodynamic Prediction (실리카겔 공극에서의 이산화탄소 및 메탄 하이드레이트 상평형 측정 및 열역학적 예측)

  • Kang, Seong-Pil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.477-480
    • /
    • 2007
  • Hydrate phase equilibrium for the binary CO2+water and CH4+water mixtures in silica gel pore of nominal 6, 30, and 100 nm were measured and compared with the cacluated results based on van der Waals and Platteeuw model. At a specific temperature three-phase hydrate-water-vapor (HLV) equilibrium curves for pore hydrates were shifted to the higher-pressure condition depending on pore sizes when compared with those of bulk hydrates. Notably, hydrate phase equilibria for the case of 100 nominal urn pore size were nealy identical with those of bulk hydrates. The activities of water in porous silica gels were modified to account for capillary effect, and the calculation results were generally in good agreement with the experimental data.

  • PDF

Phase Equilibrium of the Carbon Dioxide and Methane Hydrate in Silica Gel Pores and Thermodynamic Prediction (실리카겔 공극에서의 이산화탄소 및 메탄 하이드레이트 상평형 측정 및 열역학적 예측)

  • Kang, Seong-Pil
    • New & Renewable Energy
    • /
    • v.3 no.2 s.10
    • /
    • pp.47-52
    • /
    • 2007
  • Hydrate phase equilibrium for the binary $CO_{2}$+water and $CH_{4}$+water mixtures in silica gel pore of nominal 6, 30, and 100 nm were measured and compared with the cacluated results based on van der Waals and Platteeuw model. At a specific temperature three-phase hydrate-water-vapor (HLV) equilibrium curves for pore hydrates were shifted to the higher-pressure condition depending on pore sizes when compared with those of bulk hydrates. Notably, hydrate phase equilibria for the case of 100 nominal nm pore size were nearly identical with those of bulk hydrates. The activities of water in porous silica gels were modified to account for capillary effect, and the calculation results were generally in good agreement with the experimental data.

  • PDF

Flexible Engineering Tool for Radiofrequency Parameter Identification of RF-MEMS BAW Filters

  • Mabrouk, Mohamed;Boujemaa, Mohamed-Ali;Choubani, Fethi
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.988-995
    • /
    • 2016
  • In this paper, we present a new specific and customized interface tool with parameter identification of Modified Butterworth-Van Dyke models for ladder bulk acoustic wave filters. The aforementioned tool is easy to use and flexible because it allows simulations and reengineering to be conducted in an application. A modular design approach is applied to simplify the extension of the proposed tool for different topologies. The proposed tool was validated using measurements from an aluminum-nitride based ladder BAW filter dedicated to the frequency ranges of the Universal Mobile Telecommunications Service and standards and Wideband Code Division Multiple Access.

A Study on the Physical Characteristics of Steel-Wire Sound Absorbing Materials (금속와이어 흡음재의 물리적 특성에 관한 연구)

  • 주경민;이동훈;용호택
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1244-1249
    • /
    • 2002
  • In this study, the physical characteristics of steel-wire sound absorbing materials with different thickness and bulk density is experimentally obtained in terms of the porosity and specific flow resistivity. Based on the experimental results, the following conclusions can be made. The porosities of steel-wire sound absorbing materials are smaller than those of general absorbing materials, which are inversely proportional to the volume densities. For the porosity measurement with a good accuracy, the dynamic correction based on the system compliance should be involved in porosity measurement. In addition, the flow condition for the precise measurement of the specific flow resistivity of steel-wire sound absorbing materials should be limited in the laminar flow region.

  • PDF