• 제목/요약/키워드: bulk properties

검색결과 1,758건 처리시간 0.026초

Particle Scavenging Properties of Rain Clarified by a Complementary Study with Bulk and Semi-bulk Samples

  • Ma, Chang-Jin;Kang, Gong-Unn
    • 한국대기환경학회지
    • /
    • 제34권1호
    • /
    • pp.177-186
    • /
    • 2018
  • It is a well-known fact that precipitation plays an important role in capturing ambient particles, however, the details of particle scavenging properties have not been fully proved. To clarify the particle scavenging properties, a complementary study was carried out with the bulk and semi-bulk rain samples collected in an urban city of Japan. pH showed a continued downturn for a little bit at the beginning rainfall and then a turn-up in the following rainfall. The recorded pH values of rainwater (ranged from 3.5-4.6) demonstrated that the strong acid rain was observed during our field measurements. Compared to the subsequent rainfall, electrical conductivity in the beginning rainfall had about 1.3 times higher level. Sulfur showed an overwhelmingly high concentration compared to other elements in both ambient total suspended particles (TSP) and rain samples. On the contrary to ambient TSP, every element including Ca and Zn in rain showed a continued rise in concentration accompanied by increasing of rainfall amount. During the first period of the rainfall there was no meaningful change in elemental carbon concentration, however, it was largely increased (up to $0.2mg\;L^{-1}$) in the sequential rainfall (4.0-4.5 mm rainfall amount). The theoretically calculated number concentration of particles scavenged by raindrops showed a strong decrease of with the increasing droplet diameter regardless of particle type.

Interpretation of Physical Properties of Marine Sediments Using Multi­Sensor Core Logger (MSCL): Comparison with Discrete Samples

  • Kim, Gil-Young;Kim, Dae-Choul
    • Journal of the korean society of oceanography
    • /
    • 제38권4호
    • /
    • pp.166-172
    • /
    • 2003
  • Multi­Sensor Core Logger (MSCL) is a useful system for logging the physical properties (compressional wave velocity, wet bulk density, fractional porosity, magnetic susceptibility and/or natural gamma radiation) of marine sediments through scanning of whole cores in a nondestructive fashion. But MSCL has a number of problems that can lead to spurious results depending on the various factors such as core slumping, gas expansion, mechanical stretching, and the thickness variation of core liner and sediment. For the verification of MSCL data, compressional wave velocity, wet bulk density, and porosity were measured on discrete samples by Hamilton Frame and Gravimetric method, respectively. Acoustic impedance was also calculated. Physical property data (velocity, wet bulk density, and impedance) logged by MSCL were slightly larger than those of discrete sample, and porosity is reverse. Average difference between MSCL and discrete sample at both sites is relatively small such as 22­24 m/s in velocity, $0.02­-0.08\;g/\textrm{cm}^3$ in wet bulk density, and 2.5­2.7% in porosity. The values also show systematic variation with sediment depth. A variety of factors are probably responsible for the differences including instrument error, various measurement method, sediment disturbance, and accuracy of calibration. Therefore, MSCL can be effectively used to collect physical property data with high resolution and quality, if the calibration is accurately completed.

벌크형 와이어직조 카고메 트러스 PCM의 압축거동 (I) - 균일 변형 상계해 - (Mechanical Behaviors under Compression in Wire-Woven Bulk Kagome Truss PCMs (I) - Upper Bound Solution with Uniform Deformation -)

  • 현상일;최지은;강기주
    • 대한기계학회논문집A
    • /
    • 제31권6호
    • /
    • pp.694-700
    • /
    • 2007
  • Recently, a new cellular metal, WBK(Wire woven Bulk Kagome) has been introduced. WBK is fabricated by assembling metal wires in six directions into a Kagome-like truss structure and by brazing it at all the crossings. Wires as the raw material are easy to handle and to attain high strength with minimum defect. And the strength and energy absorption are superior to previous cellular metals. Therefore, WBK seems to be promising once the fabrication process for mass production is developed. In this paper, an upper bound solution for the mechanical properties of the bulk WBK under compression is presented. In order to simulate uniform behavior of WBK consisted of perfectly uniform cells, a unit cell of WBK with periodic boundary conditions is analyzed by the finite element method. In comparison with experimental test results, it is found that the solution provides a good approximation of the mechanical properties of bulk WBK cellular metals except for Young's modulus. And also, the brazing joint size does not have any significant effect on the properties with an exception of an idealized thin joint.

EMI database analysis focusing on relationship between density and mechanical properties of sedimentary rocks

  • Burkhardt, Michael;Kim, Eunhye;Nelson, Priscilla P.
    • Geomechanics and Engineering
    • /
    • 제14권5호
    • /
    • pp.491-498
    • /
    • 2018
  • The Earth Mechanics Institute (EMI) was established at the Colorado School of Mines (CSM) in 1974 to develop innovations in rock mechanics research and education. During the last four decades, extensive rock mechanics research has been conducted at the EMI. Results from uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), point load index (PLI), punch penetration (PP), and many other types of tests have been recorded in a database that has been unexamined for research purposes. The EMI database includes over 20,000 tests from over 1,000 different projects including mining and underground construction, and analysis of this database to identify relationships has been started with preliminary results reported here. Overall, statistically significant correlations are identified between bulk density and mechanical strength properties through UCS, BTS, PLI, and PP testing of sedimentary, igneous, and metamorphic rocks. In this paper, bulk density is considered as a surrogate metric that reflects both mineralogy and porosity. From this analysis, sedimentary rocks show the strongest correlation between the UCS and bulk density, whereas metamorphic rocks exhibit the strongest correlation between UCS and PP. Data trends in the EMI database also reveal a linear relationship between UCS and BTS tests. For the singular case of rock coral, the database permits correlations between bulk density of the core versus the deposition depth and porosity. The EMI database will continue under analysis, and will provide additional insightful and comprehensive understanding of the variation and predictability of rock mechanical strength properties and density. This knowledge will contribute significantly toward the increasingly safe and cost-effective geostructures and construction.

초전도 벌크의 자기적 특성을 위한 간편한 시스템 (Magnetic Force Properties of Superconducting Bulk)

  • 이상헌
    • 한국전기전자재료학회논문지
    • /
    • 제36권1호
    • /
    • pp.70-73
    • /
    • 2023
  • To improve superconductor properties, the size of the crystal grains of the superconductor should be adjusted, the amount of electricity flowing through the superconductor should be increased, and the superconductor should be designed to withstand external magnetic fields. It is necessary to control the microstructure so that many flux pinning centers are developed inside the superconductor so that defects are generated physically or chemically, and the micro secondary phase for trapped magnetic flux must be dispersed inside the superconductor. In order to measure the superconducting magnetic force of the superconducting bulk in a simplified manner, the superconducting magnetic force was analyzed using an Nd-Fe-B permanent magnet of 3.80 kG. In particular, by delaying the growth of partially melted Y2BaCuO5 particles, we devised a plan to refine Y2BaCuO5 particles to effectively improve superconducting magnetic force, and analyzed superconducting magnetic force in a single crystal YBa2Cu3O7-y superconducting bulk using a gauss meter. The melted superconducting bulk traps 80% or more of the applied magnetic field, and can be used as a bulk magnet of high magnetic field magnetization applicable to electric power equipment.

유채 종자의 물리적 특성(I) (Physical Properties of Rapeseed (I))

  • ;한재웅;홍상진;최희석;김유호;금동혁
    • Journal of Biosystems Engineering
    • /
    • 제33권2호
    • /
    • pp.101-105
    • /
    • 2008
  • Some physical properties of rapeseed such as geometric properties (linear dimensions, sphericity, seed volume, surface area) and gravimetric properties (the mass of one thousand seeds, bulk density) were analyzed at five levels of moisture content of 10.03, 14.91, 20.07, 25.06 and 30.12% (w.b.). The physical properties of rapeseed were evaluated as a function of seed moisture content. In the moisture range, when the moisture content increase, sphericity decreased from 0.946 to 0.927, and geometric mean diameter, seed volume and surface area increased from 2.17 to 2.31 mm, 5.58 to $6.88 \;mm^3$ and 14.76 to $16.77\;mm^2$ respectively. Mass of one thousand seeds increased from 5.04 to 6.46 g. Bulk density decreased from 579.3 to $549.2\;kg/m^3$ due to swelling of the seed.

Bulk graphite: materials and manufacturing process

  • Lee, Sang-Min;Kang, Dong-Su;Roh, Jea-Seung
    • Carbon letters
    • /
    • 제16권3호
    • /
    • pp.135-146
    • /
    • 2015
  • Graphite can be classified into natural graphite from mines and artificial graphite. Due to its outstanding properties such as light weight, thermal resistance, electrical conductivity, thermal conductivity, chemical stability, and high-temperature strength, artificial graphite is used across various industries in powder form and bulk form. Artificial graphite of powder form is usually used as anode materials for secondary cells, while artificial graphite of bulk form is used in steelmaking electrode bars, nuclear reactor moderators, silicon ingots for semiconductors, and manufacturing equipment. This study defines artificial graphite as bulk graphite, and provides an overview of bulk graphite manufacturing, including isotropic and anisotropic materials, molding methods, and heat treatment.

Recent Development of Bulk High-Tc Superconductors

  • 유상임
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 초전도 자성체
    • /
    • pp.88-95
    • /
    • 2002
  • Recent development in the field of RE-Ba-Cu-O (REBCO, RE: Y or rare earth elements) bulk high-Tc superconductors (HTS) is reviewed in the present paper. After the fatal weak link problem of sintered REBCO superconductors has been overcome by melt processing, this field has been greatly advanced during last ten years. The critical current density $J_c$ at 77 K has been enhanced by introducing effective flux pinning sites into the $REBa_2Cu_3O_y$ (RE123) superconducting matrix. Large melt-textured REBCO bulk crystals have been fabricated with the TSMG(top-seeded melt growth) technique. Mechanical properties of REBCO bulks have been improved by using the Ag additive or epoxy resin. Real bulk applications such as current lead, fault current limiter, flywheel energy storage system, magnetic field source, magnetic separation system, and etc., surely come true near future.

  • PDF

다른 하중속도 조건에서 압입에 의한 벌크 금속유리의 변형거동 (Deformation Behavior of Zr-based Bulk Metallic Glass by Indentation under Different Loading Rate Conditions)

  • 신형섭;장순남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.42-47
    • /
    • 2004
  • Metallic glasses are amorphous meta-stable solids and are now being processed in bulk form suitable for structural applications including impact. Bulk metallic glasses have many unique mechanical properties such as high yield strength and fracture toughness, good corrosion and wear resistance that distinguish them from crystalline metals and alloys. However, only a few studies could be found mentioning the dynamic response and damage of metallic glasses under impact or shock loading. In this study, we employed a small explosive detonator for the dynamic indentation on a Zr-based bulk amorphous metal in order to evaluate the damage behavior of bulk amorphous metal under impact loading. These results were compared with those of spherical indentation under quasi-static and impact loading. The interface bonded specimens were adopted to observe the appearances of subsurface damage induced during indentation under different loading conditions.

  • PDF