• Title/Summary/Keyword: bulge-Galaxy

Search Result 77, Processing Time 0.021 seconds

The Key role of the Bulge Compactness in Star-forming Activity in Late-type Galaxies

  • Jee, Woong-bae;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.32.2-32.2
    • /
    • 2015
  • Which mechanism governs star-formation activity in galaxies is still one of the most important, open questions in galactic astronomy. To address this issue, we investigate the specific star formation rate (sSFR) of late-type galaxies as functions of various structural parameters including the morphology, mass, radius, and mass compactness (MC). We use a sample of ~200,000 late-type galaxies with z = 0.02 ~ 0.2 from SDSS DR7 and a catalog of bulge-disk decomposition (Simard et al. 2011; Mendel et al. 2013). We find a remarkably strong correlation between bulge's MC and galaxy's sSFR, in the sense that galaxies with more compact bulge tend to be of lower sSFR. This seems counter-intuitive given that galactic sSFR is driven predominantly by disks rather than bulges and suggests that the central mass density plays a key role in recent star-forming activity. We discuss the physical cause of the new findings in terms of the bulge growth history and AGN activities.

  • PDF

Assembling the bulge from globular clusters: Evidence from sodium bimodality

  • Lee, Young-Wook;Kim, Jenny J.;Chung, Chul;Jang, Sohee;Lim, Dongwook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.37.2-37.2
    • /
    • 2019
  • Recent investigations of the double red clump in the color-magnitude diagram of the Milky Way bulge cast serious doubts on the structure and formation origin of the outer bulge. Unlike previous interpretation based on an X-shaped bulge, stellar evolution models and CN-band observations have suggested that this feature is another manifestation of the multiple stellar population phenomenon observed in globular clusters (GCs). This new scenario requires a significant fraction of the outer bulge stars with chemical patterns uniquely observed in GCs. Here we show from homogeneous high-quality spectroscopic data that the red giant branch stars in the outer bulge ($>5.5^{\circ}$ from the Galactic center) are clearly divided into two groups according to Na abundance in the [Na/Fe] - [Fe/H] plane. The Na-rich stars are also enhanced in Al, while the differences in O and Mg are not observed between the two Na groups. The population ratio and the Na and Al differences between the two groups are also comparable with those observed in metal-rich GCs. Since these chemical patterns and characteristics are only explained by stars originated in GCs, this is compelling evidence that the outer bulge was mostly assembled from disrupted proto-GCs in the early history of the Milky Way. We will also discuss the implications of this result on the formation of the early-type galaxies in general.

  • PDF

New implications on the analysis of stellar populations based on the close link between globular clusters and their host galaxies

  • Chung, Chul;Yoon, Suk-Jin;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.47.4-47.4
    • /
    • 2019
  • Recent observations on the double red clumps in the bulge validate the close connection in stellar populations between Galactic globular clusters (GCs) and the Milky Way (MW) bulge. Intriguingly, diverse phenomena observed in early-type galaxies (ETGs) and their GC systems are also indicating the similarities with Galactic GCs with multiple populations. Here, we present the population synthesis for the Galactic bulge and ETGs using stellar populations observed in the Galactic GCs with multiple populations. Our new models well explain observations of both the MW bulge and ETGs. Also, the inclusion of GC-originated population to the population synthesis model shows substantial impacts on the age-dating of stellar populations. The implication of this result for the interpretation of the formation history and the age-dating of ETGs will be discussed in detail.

  • PDF

On the claimed X-shaped structure in the Milky Way bulge

  • Han, Daniel;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.55.1-55.1
    • /
    • 2017
  • A number of recent studies have claimed that the double red clump observed in the Milky Way bulge is a consequence of an X-shaped structure. In particular, Ness & Lang (2016) report a direct detection of a faint X-shaped structure in the bulge from the residual map of the Wide-Field Infrared Survey Explorer (WISE) image. Here we show, however, that their result is seriously affected by a bulge model subtracted from the original image. When a boxy bulge model is subtracted, instead of a simple exponential bulge model as has been done by Ness & Lang, we find that most of the X-shaped structure in the residuals disappears. Furthermore, even if real, the stellar density in the claimed X-shaped structure appears to be too low to be observed as a strong double red clump at $l=0^{\circ}$

  • PDF

Investigation of the apparent α-bimodality among the galactic bulge stars from the APOGEE database

  • Park, Seunghyeon;Hong, Seungsoo;Jang, Sohee;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.70.1-70.1
    • /
    • 2019
  • Recent investigation of the APOGEE bulge stars by Zasowski et al. (2018) shows a fraction of stars enhanced in O, Ca, and Mg abundances. It is not clear, however, that this apparent ${\alpha}$-bimodality is reflecting a real feature or an artifact from spectral fitting. We will report our progress in understanding the nature and reality of this phenomenon. We will also discuss the spread in Na abundance among the inner bulge stars with respect to that observed among disk sample.

  • PDF

Distance measurements for double red clump in the Milky Way bulge using Gaia DR2

  • Lim, Dongwook;Hong, Seungsoo;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.39.3-40
    • /
    • 2018
  • The presence of double red clump (RC) in the Milky Way bulge is widely accepted as evidence for a giant X-shaped structure originated from the bar instability. We suggested, however, a drastically different interpretation based on the multiple stellar populations phenomenon as is observed in globular clusters. Our discovery of a significant difference in CN-band between two RCs strengthens our scenario. On the other hand, recent Gaia survey provides trigonometric parallax distances for more than one billion stars in our Galaxy. These distance measurements would provide the important test as to the origin of the double RC in the Milky Way bulge. In this talk, we will present our preliminary results from Gaia DR2.

  • PDF

SURFACE PHOTOMETRY OF NGC4419

  • CHOI JEONG TAE;ANN HONG BAE;LEE HYUNG MOK
    • Journal of The Korean Astronomical Society
    • /
    • v.26 no.1
    • /
    • pp.33-45
    • /
    • 1993
  • We have conducted surface photometry of a spiral galaxy NGC4419, by making use of photographic plates in U, B, V and R-bands taken by 105cm Schmidt Camera at Kiso Observatory. Two dimensional surface brightness distributions as well as luminosity profiles along the major axis are examined in detail to decipher the morphological properties of the galaxy. Analysis of the color distributions of NGC4419 shows that B-V and U-B colors remain constant throughout the galaxy with a weak trend of blue bulge in B-V color. The blue bulge might indicate an active star formation in the nucleus of NGC4419. For a quantitative analysis of the luminosity distribution of NGC4419, the observed luminosity profiles are decomposed into bulge and disk components, assuming the bulge component to follow de Vaucouleurs $\gamma^{1/4}-law$ while the disk component is assumed to be exponential. The fitting generally fails at the central part and at the shoulder near r = 15' where bulge and disk components overlap. The failure at the central part cannot be attributed wholly by the seeing disk since the core-radius of the central plateau is much larger than the width of point spread function. The failure at shoulder could be due to the luminosities from the spiral arms.

  • PDF

HOST GALAXY OF TIDAL DISRUPTION OBJECT, SWIFT J1644+57

  • YOON, YONGMIN;IM, MYUNGSHIN;LEE, SEONG-KOOK;PAK, SOOJONG
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.475-476
    • /
    • 2015
  • We analyze the host galaxy of the tidal disruption object, Swift J1644+57, based on long-term optical to NIR data obtained with CQUEAN and UKIRT WFCAM observations. We decompose the bulge component using high resolution HST WFC3 images. We conclude that the host galaxy is bulge dominant. We investigate optical to NIR light curves and estimate the multi-band fluxes of the host galaxy. We fit spectral energy distribution (SED) models in order to determine the stellar mass. Finally, we estimate the mass of the black hole in the center of the host galaxy based on several scale relations.

MECHANISM INDUCING GAS SUPPLY TO THE CENTRAL 10 PARSEC OF THE MILKY WAY

  • Morgan, Hannah L.;Kim, Sungsoo S.;Shin, Jihye;Chun, Kyungwon;Park, So-Myoung;Lee, Joowon;Minh, Young Chol
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.6
    • /
    • pp.117-123
    • /
    • 2020
  • We investigate the plausibility of mass return, from stellar mass loss processes within the central ~100 pc region of the Milky Way (the inner nuclear bulge), as a mass supply mechanism for the Circumnuclear Disk (CND). Gas in the Galactic disk migrates inward to the Galactic centre due to the asymmetric potential caused by the Galactic bar. The inward migration of gas stops and accumulates to form the central molecular zone (CMZ), at 100-200 pc from the Galactic center. It is commonly assumed that stars have formed in the CMZ throughout the lifetime of the Galaxy and have diffused inward to form a 'r-2 stellar cusp' within the inner nuclear bulge. We propose that the stars migrating inward from the CMZ supply gas to the inner nuclear bulge via stellar mass loss, resulting in the formation of a gas disk along the Galactic plane and subsequent inward migration down to the central 10 pc region (CND). We simulate the evolution of a gas distribution that initially follows the stellar distribution of the aforementioned stellar cusp, and illustrate the potential gas supply toward the CND.

Host galaxy of tidal disruption object, Swift J1644+57

  • Yoon, Yongmin;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.70.1-70.1
    • /
    • 2013
  • We present long-term optical to NIR data of the tidal disruption object, Swift J1644+57. The data were obtained with CQUEAN, UKIRT WFCAM observations. We analyze the morphology of the host galaxy of this object and decompose the bulge component using high resolution HST WFC3 images. We conclude that the host galaxy is bulge dominant. We also estimate the multi-band fluxes of the host galaxy through the light curves based on the long-term observational data. We fit the SED models to the multi-band fluxes of the host galaxy and determine its stellar mass. Finally, we estimate the mass of the central super massive black hole which is thought to be the main role of the tidal disruption event. The estimated stellar mass and black hole mass are $10^{9.1}M_{\odot}$, $10^{6.8}M_{\odot}$ respectively. We compare our results to other results that have studied before.

  • PDF