• Title/Summary/Keyword: building-congested district

Search Result 5, Processing Time 0.015 seconds

A Numerical Study on the Effects of Buildings and Topography on the Spatial Distributions of Air Pollutants in a Building-Congested District (건물 밀집 지역에서 대기오염물질 분포에 미치는 건물과 지형의 영향에 관한 수치 연구)

  • Kang, Geon;Kim, Jae-Jin;Lee, Jae-Bum
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.139-153
    • /
    • 2020
  • Using a computationalfluid dynamics(CFD) model, thisstudy evaluated the representativeness of an air quality monitoring system (AQMS) in an urban area and presented a methodology to determine the suitable AQMS locations for specific purposes. For this, we selected a 1.6 km × 1.6 km area around the Eunpyeong-gu AQMS (AQMS 111181) as a target area. We conducted simulationsfor two emission scenarios (scenario one: air pollutants transported from inflow boundaries, scenario two: air pollutants emitted from roads). Urban airflows were markedly influenced by mountainous terrain located in the northeast and southeast of the target area, and complicated airflow patterns occurred around the buildings. The distributions of air pollutants were dependent on the terrain (mountain) in scenario one, but the road location and building height in scenario 2. We evaluated whether the AQMS could represent the air quality in the target area based on the simulations for two scenarios. The concentrations simulated at the AQMS were similar in magnitude to the layer mean concentrations, which indicated good representativeness for the air quality in the target area. We also suggested which locations were suitable for different measurement purposes (hot spots, clean zones, average zones, shelter zones, equi-background zones).

A Study on Evaluation Analysis of Wind Formation Function using KLAM_21 -The Case of Daegu City- (KLAM_21을 활용한 바람생성기능 평가분석 연구 -대구시를 대상으로-)

  • Ryu, Ji-Won;Jung, Eung-Ho;Kim, Dae-Wuk;Cha, Jae-Gyu;Son, Kyung-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.2
    • /
    • pp.85-92
    • /
    • 2008
  • This study, the one concerning the evaluation analysis of the function of the wind generation using KLAM_21, has examined closely how the wind really flows on the space of the city, working with the object of case location. In the first place, the cold air formed at upper stream of Sincheon river, a ravine of whole area of Gachang gully and an inclined plane of neighboring mountainous district, flows to the north and expands itself along the upper stream of the Sincheon river, and as the time passes, it is tending upwards in the change of the volume and height as well as of the velocity and direction, of the cold air. It was learned that this phenomenon has made it clear that the spatial features of this area give rise to very good condition in generating and flowing the cold air. Meanwhile, it has been shown that in the area of park in the Ap-mountain, the generation and flow of the cold air are much interrupted because of the overpass traversing the whole area of the park of Ap-mountain, the congested area of large-scaled apartments and the urban development activities constructing the building in the park, and the volume and height of the cold air has been grown very small. In conclusion, It has been learned that for maximization of the spatial effect of the wind corridor, the areas where the cold air is generated, flowed, accumulated, and maintained, have to be connected spatially, and this spatial connection has a close relation with spatial features of the area.

  • PDF

A Numerical Study on the Characteristics of Flows and Fine Particulate Matter (PM2.5) Distributions in an Urban Area Using a Multi-scale Model: Part I - Analysis of Detailed Flows (다중규모 모델을 이용한 도시 지역 흐름과 초미세먼지(PM2.5) 분포 특성 연구: Part I - 상세 흐름 분석)

  • Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1643-1652
    • /
    • 2020
  • To investigate the characteristics of detailed flows in a building-congested district, we coupled a computation fluid dynamics (CFD) model to the local data assimilation and prediction system (LDAPS), a current operational numerical weather prediction model of the Korea Meteorological Administration. For realistic numerical simulations, we used the meteorological variables such as wind speeds and directions and potential temperatures predicted by LDAPS as the initial and boundary conditions of the CFD model. We trilinearly interpolated the horizontal wind components of LDAPS to provide the initial and boudnary wind velocities to the CFD model. The trilinearly interpolated potential temperatures of LDAPS is converted to temperatures at each grid point of the CFD model. We linearly interpolated the horizontal wind components of LDAPS to provide the initial and boundary wind velocities to the CFD model. The linearly interpolated potential temperatures of LDAPS are converted to temperatures at each grid point of the CFD model. We validated the simulated wind speeds and directions against those measured at the PKNU-SONIC station. The LDAPS-CFD model reproduced similar wind directions and wind speeds measured at the PKNU-SONIC station. At 07 LST on 22 June 2020, the inflow was east-north-easterly. Flow distortion by buildings resulted in the east-south-easterly at the PKNU-SONIC station, which was the similar wind direction to the measured one. At 19 LST when the inflow was southeasterly, the LDAPS-CFD model simulated southeasterly (similar to the measured wind direction) at the PKNU-SONIC station.

A Numerical Study on the Characteristics of Flows and Fine Particulate Matter (PM2.5) Distributions in an Urban Area Using a Multi-scale Model: Part II - Effects of Road Emission (다중규모 모델을 이용한 도시 지역 흐름과 초미세먼지(PM2.5) 분포 특성 연구: Part II - 도로 배출 영향)

  • Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1653-1667
    • /
    • 2020
  • In this study, we coupled a computation fluid dynamics (CFD) model to the local data assimilation and prediction system (LDAPS), a current operational numerical weather prediction model of the Korea Meteorological Administration. We investigated the characteristics of fine particulate matter (PM2.5) distributions in a building-congested district. To analyze the effects of road emission on the PM2.5 concentrations, we calculated road emissions based on the monthly, daily, and hourly emission factors and the total amount of PM2.5 emissions established from the Clean Air Policy Support System (CAPSS) of the Ministry of Environment. We validated the simulated PM2.5 concentrations against those measured at the PKNU-AQ Sensor stations. In the cases of no road emission, the LDAPS-CFD model underestimated the PM2.5 concentrations measured at the PKNU-AQ Sensor stations. The LDAPS-CFD model improved the PM2.5 concentration predictions by considering road emission. At 07 and 19 LST on 22 June 2020, the southerly wind was dominant at the target area. The PM2.5 distribution at 07 LST were similar to that at 19 LST. The simulated PM2.5 concentrations were significantly affected by the road emissions at the roadside but not significantly at the building roof. In the road-emission case, the PM2.5 concentration was high at the north (wind speeds were weak) and west roads (a long street canyon). The PM2.5 concentration was low in the east road where the building density was relatively low.

Carbon Monoxide Dispersion in an Urban Area Simulated by a CFD Model Coupled to the WRF-Chem Model (WRF-Chem 모델과 결합된 CFD 모델을 활용한 도시 지역의 일산화탄소 확산 연구)

  • Kwon, A-Rum;Park, Soo-Jin;Kang, Geon;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.679-692
    • /
    • 2020
  • We coupled a CFD model to the WRF-Chem model (WRF-CFD model) and investigated the characteristics of flows and carbon monoxide (CO) distributions in a building-congested district. We validated the simulated results against the measured wind speeds, wind directions, and CO concentrations. The WRF-Chem model simulated the winds from southwesterly to southeasterly, overestimating the measured wind speeds. The statistical validation showed that the WRF-CFD model simulated the measured wind speeds more realistically than the WRF-Chem model. The WRF-Chem model significantly underestimated the measured CO concentrations, and the WRF-CFD model improved the CO concentration prediction. Based on the statistical validation results, the WRF-CFD model improved the performance in predicting the CO concentrations by taking complicatedly distributed buildings and mobiles sources of CO into account. At 04 KST on May 22, there was a downdraft around the AQMS, and airflow with a relatively low CO concentration was advected from the upper layer. Resultantly, the CO concentration was lower at the AQMS than the surrounding area. At 15 KST on May 22, there was an updraft around the AQMS. This resulted in a slightly higher CO concentration than the surroundings. The WRF-CFD model transported CO emitted from the mobile sources to the AQMS measurement altitude, well reproducing the measured CO concentration. At 18 KST on May 22, the WRF-CFD model simulated high CO concentrations because of high CO emission, broad updraft area, and an increase in turbulent diffusion cause by wind-shear increase near the ground.