In this study, the vulnerability of two existing asymmetric steel building frames to Progressive Collapse (PC) is assessed. The buildings have different frame systems, steel sections and number of stories (nine and six). An alternate path method (APM) with a linear static analysis (LS) is carried out according to General Services Administration (GSA) 2003 guidelines. The Demand Capacity Ratio (DCR) of each primary element (beams and columns) is given with its specific details for all frames. The results show that the nine-story building with a dual frame system (moment frame with bracing system) has a lower susceptibility and greater resistance to PC than the six-story building with a simple building frame system (gravity system with bracing system). Implementing built-up box-shaped sections for columns is a better choice than using built-up I-shaped sections because there is no weak axis for the box section.
국내의 자연재해피해 중 가장 큰 부분을 대부분은 매년 여름철에 발생하고 있는 태풍과 장마로 인한 침수피해이므로, 도시 홍수에 대한 관심은 꾸준히 증가하고 있다. 반복되는 피해 저감을 위해 다양한 방법으로 홍수취약성을 분석하지만, 반복되는 도시(재)개발로 인해 지형 및 사회경제적인 요인들이 바뀌고 있어, 기존에 실시했던 홍수취약성 분석결과가 현실적으로 반영이 되기 힘든 상태이다. 이에 홍수피해 예방을 위해 변형된 지형과 환경에 맞춰 새로운 홍수취약성 분석을 실시하여 지역의 투자 우선순위를 파악할 필요가 있다. 본 연구에서는 우리나라 중 가장 도시화가 된 서울시 25개 구를 대상지역으로 선정하였으며, 홍수취약성 인자들을 Pressure-State-Response (PSR) 구조로 구분하였다. 압력지수(PI)는 인구밀도, 차량 수 등 9개의 인자를, 상태지수(SI)는 공공시설 피해액 등 4개의 인자를 선정하였으며, 대책지수(RI)는 대피시설 수, 재정자립도 등 7개의 인자를 선택하여 홍수취약성지수를 계산하였다. 각 인자들의 가중치를 계산하기 위해 AHP 방법과 Fuzzy이론을 결합한 Fuzzy AHP 방법을 적용하였다. 그 결과, 세부지수인 압력지수나 대책지수는 가중치 결정방법에 따라 숫자가 변하기는 하지만, 순위 변화는 없었으며, 상태지수는 값 뿐만 아니라 순위에도 다소 변화가 있었다. 또한 세부지수들을 결합하여 계산한 홍수취약성지수는 Fuzzy AHP 방법으로 계산하였을 경우, 강남 지역의 취약성이 눈에 띄게 감소하였다. 이는 강남지역의 홍수피해복구금액이나 재정자립도가 높고, 다른 지자체와 차이가 크기 때문에 Fuzzy 수를 이용하여 불확실성을 고려할 경우 취약성이 낮아진 것으로 분석된다.
Yesilyurt, Ali;Zulfikar, Abdullah C.;Tuzun, Cuneyt
Earthquakes and Structures
/
제21권6호
/
pp.627-639
/
2021
Fragility curves are being more significant as a useful tool for evaluating the relationship between the earthquake intensity measure and the effects of the engineering demand parameter on the buildings. In this paper, the effect of different site conditions on the vulnerability of the structures was examined through the fragility curves taking into account different strength capacities of the precast columns. Thus, typical existing single-story precast RC industrial buildings which were built in Turkey after the year 2000 were examined. The fragility curves for the three typical existing industrial structures were derived from an analytical approach by performing non-linear dynamic analyses considering three different soil conditions. The Park and Ang damage index was used in order to determine the damage level of the members. The spectral acceleration (Sa) was used as the ground motion parameter in the fragility curves. The results indicate that the fragility curves were derived for the structures vary depending on the site conditions. The damage probability of exceedance values increased from stiff site to soft site for any Sa value. This difference increases in long period in examined buildings. In addition, earthquake demand values were calculated by considering the buildings and site conditions, and the effect of the site class on the building damage was evaluated by considering the Mean Damage Ratio parameter (MDR). Achieving fragility curves and MDR curves as a function of spectral acceleration enables a quick and practical risk assessment in existing buildings.
조직의 정보시스템이 직면한 위험을 분석할 수 있는 위험분석모델을 정보시스템구축 방법론에 적용하여 정보시스템 구축을 진행하면서 위험분석 결과를 반영할 수 있도록 하였다. 위험분석은 조직의 정보자산에 대한 위협과 취약성, 그리고 대응책간의 함수관계를 활용하는 방법으로 조직이 보유한 정보자산에 내재한 취약성의 영향범위와 이에 대응하고 있는 위협의 빈도와 강도 그리고 위협에 대한 대응책의 적용정도를 분석해 종합적인 정보위험수준을 평가하는 방법이다.
This paper presents a simple methodology that integrates an improved storey shear modelling, Incremental Dynamic Analysis and Monte Carlo Simulation in order to carryout vulnerability analysis towards development of fragility curves for Unreinforced Brick Masonry buildings. The methodology is demonstrated by developing fragility curves of a single storey Unreinforced Brick Masonry building for which results of experiment under lateral load is available in the literature. In the study presented, both uncertainties in mechanical properties of masonry and uncertainties in the characteristics of earthquake ground motion are included. The research significance of the methodology proposed is that, it accommodates a new method of damage grade classification which is based on 'structural performance characteristics' instead of 'fixed limiting values'. The usefulness of such definition is discussed as against the existing practice.
본 연구에서는 열환경 취약성 평가에 관한 국 내외 선행연구 고찰을 바탕으로 열환경 취약성 평가에 적합하면서 도시 및 환경계획 등 공간계획 분야에서 활용할 수 있는 취약성 평가지표를 선정하고, 이를 활용하여 사례지역인 서울시의 열환경 상태를 진단하였다. 이를 위해 폭염, 도시 열섬, 도시 미기후 등 국내 외 열환경 취약성 평가에 활용된 지표들을 고찰하여 도시 열환경 취약성 평가를 위한 15개 지표를 선정하였는데, 기후노출 분야의 건물체적, 민감도 분야의 열환경 취약 건축물, 적응능력 분야의 녹지면적 등 도시구조적 공간적 지표를 포함하였다. 선정된 지표 중 사례지역인 서울지역에 대해 활용가능한 12개 지표의 공간정보를 구축하고, 퍼지이론을 활용한 GIS 공간분석을 통해 서울의 열환경 취약성을 평가하였다. 분석 결과, 강남 지역이 강북 지역보다 열환경에 더 취약한 것으로 파악되었는데, 강남 지역에서는 서초구, 강남구, 동작구, 영등포구, 강서구 일대의 열환경 취약성이 상대적으로 높게 나타났으며, 강북 지역에서는 동대문구, 강북구, 광진구, 중랑구 일대가 다른 구에 비해서 취약성이 높은 것으로 나타났다. 산림지역 및 서울시 외곽지역에 위치한 관악구, 도봉구, 은평구, 노원구 등은 관악산, 북한산 등 산림의 영향으로 인해 '기후노출'과 '민감도' 분야의 취약성이 낮았다. 하지만, 자료수집의 한계로 활용하지 않았던 '적응능력' 분야의 에어컨 보유 현황 지표가 분석에 반영된다면, 서초구, 강남구 등 취약성이 높게 평가된 지역의 결과에 영향을 미쳤을 것으로 예상된다. 본 연구는 기존의 국내 열환경 취약성 평가에서 활용하지 않았던 도시구조적 공간적 지표를 활용함으로써 도시 및 환경계획 분야에서 열취약성을 개선하기 위한 정책 마련에 기여하고, 열환경 위험성을 저감하기 위한 공간계획 수립에 기여할 수 있을 것으로 판단한다.
In the Korean Building Code (KBC), the Design Eccentricity involves the torsional amplification factor (TAF), and the inherent and accidental eccentricities. When a structure of less than 6-stories and assigned to seismic design category C or D is designed using equivalent static analysis method, both KBC-2006 and KBC-2009 use the TAF but apply different calculation methods for the of design eccentricity. The design eccentricity in KBC-2006 is calculated by multiplying the sum of inherent eccentricity and accidental eccentricity at each level by a TAF but that in KBC-2009 is calculated by multiplying only the accidental eccentricity by a TAF. In this paper, the damage indices of a building with planar structural irregularity designed by different design eccentricities are compared and the relationship between the earthquake damage and design eccentricity of the building is evaluated. On the basis of this study, the increment of design eccentricity results in the decrement of final eccentricity and global damage index of structure. It is observed that design eccentricity in KBC-2006 reduces the vulnerability of torsional irregular building compared to design eccentricity in KBC-2009.
In different high seismic regions around the world, many non-ductile existing reinforced concrete frame buildings, built without adequate seismic detailing requirements, have been damaged or collapsed after past earthquakes. The assessment and the retrofit of these non-ductile concrete structures is crucial theme of research for all the scientific community of engineers. In particular, a careful assessment of the existing building is fundamental for understanding the failure mechanisms that govern the collapse of the structure or the achievement of the recommended limit states. Based on the seismic assessment, the best retrofit strategy can be designed and applied to the structure. A school building located in Avellino province (Italy) is the case study. The analysis of seismic vulnerability carried out on the mentioned building has highlighted deficiencies in both static and seismic load conditions. The retrofit of the building has been designed based on different retrofit options in order to show the real retrofit design developed from the engineers to achieve the seismic safety of the building. The retrofit costs associated to structural operations are calculated for each case and have been summed up to the costs of the in situ tests. The paper shows a real retrofit design case study in which the best solution is chosen based on the results in terms of structural performance and cost among the different retrofit options.
Turkey is located in one of the most seismically active regions of in Europe. The majority of the population living in big cities are at high seismic risk due to insufficient structural resistance of the existing buildings. Such a seismic risk brings the need for a comprehensive seismic evaluation based on the risk analysis in Turkey. Determining the seismic resistance level of existing building stock against the earthquakes is the first step to reduce the damages in a possible earthquake. Recently in January 2020, the Elazig earthquake brought the importance of the issue again in the public. However, the excessive amount of building stock, labor, and resource problems made the implementation phase almost impossible and revealed the necessity to carry out alternative studies on this issue. This study aims for a detailed investigation of residential buildings in Antalya, Turkey. The approach proposed here can be considered an improved state of building survey methods previously identified in Turkey's Design Code. Antalya, Turkey's fifth most populous city, with a population over 2.5 Million, was investigated as divided into sub-regions to understand the vulnerability, and a threshold value found for the study area. In this study, 26,610 reinforced concrete buildings between 1 to 7 stories in Antalya were examined by using the rapid visual assessment method. A specific threshold value for the city of Antalya was determined with the second level examination and statistical methods carried out in the determined sub-region. With the micro zonation process, regions below the threshold value are defined as the priority areas that need to be examined in detail. The developed methodology can be easily calibrated for application in other cities and can be used to determine new threshold values for those cities.
The purpose of this study is to investigate the efficiency of various structural modeling schemes for evaluating seismic performances and fragility of the reactor containment building (RCB) structure in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). Four structural modeling schemes, i.e. lumped-mass stick model (LMSM), solid-based finite element model (Solid FEM), multi-layer shell model (MLSM), and beam-truss model (BTM), are developed to simulate the seismic behaviors of the containment structure. A full three-dimensional finite element model (full 3D FEM) is additionally constructed to verify the previous numerical models. A set of input ground motions with response spectra matching to the US NRC 1.60 design spectrum is generated to perform linear and nonlinear time-history analyses. Floor response spectra (FRS) and floor displacements are obtained at the different elevations of the structure since they are critical outputs for evaluating the seismic vulnerability of RCB and secondary components. The results show that the difference in seismic responses between linear and nonlinear analyses gets larger as an earthquake intensity increases. It is observed that the linear analysis underestimates floor displacements while it overestimates floor accelerations. Moreover, a systematic assessment of the capability and efficiency of each structural model is presented thoroughly. MLSM can be an alternative approach to a full 3D FEM, which is complicated in modeling and extremely time-consuming in dynamic analyses. Specifically, BTM is recommended as the optimal model for evaluating the nonlinear seismic performance of NPP structures. Thereafter, linear and nonlinear BTM are employed in a series of time-history analyses to develop fragility curves of RCB for different damage states. It is shown that the linear analysis underestimates the probability of damage of RCB at a given earthquake intensity when compared to the nonlinear analysis. The nonlinear analysis approach is highly suggested for assessing the vulnerability of NPP structures.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.