• Title/Summary/Keyword: building vulnerability

Search Result 171, Processing Time 0.028 seconds

Hurricane vulnerability model for mid/high-rise residential buildings

  • Pita, Gonzalo L.;Pinelli, Jean-Paul;Gurley, Kurt;Weekes, Johann;Cocke, Steve;Hamid, Shahid
    • Wind and Structures
    • /
    • v.23 no.5
    • /
    • pp.449-464
    • /
    • 2016
  • Catastrophe models appraise the natural risk of the built-infrastructure simulating the interaction of its exposure and vulnerability with a hazard. Because of unique configurations and reduced number, mid/high-rise buildings present singular challenges to the assessment of their damage vulnerability. This paper presents a novel approach to estimate the vulnerability of mid/high-rise buildings (MHB) which is used in the Florida Public Hurricane Loss Model, a catastrophe model developed for the state of Florida. The MHB vulnerability approach considers the wind pressure hazard exerted over the building's height as well as accompanying rain. The approach assesses separately the damages caused by wind, debris impact, and water intrusion on building models discretized into typical apartment units. Hurricane-induced water intrusion is predicted combining the estimates of impinging rain with breach and pre-existing building defect size estimates. Damage is aggregated apartment-by-apartment and story-by-story, and accounts for vertical water propagation. The approach enables the vulnerability modeling of regular and complex building geometries in the Florida exposure and elsewhere.

Analysis of Typhoon Vulnerability According to Quantitative Loss Data of Typhoon Maemi (태풍 매미의 피해 데이터 기반 국내 태풍 취약성 분석에 관한 연구)

  • Ahn, Sung-Jin;Kim, Tae-Hui;Kim, Ji-Myong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.125-126
    • /
    • 2019
  • This study aims to recognize damage indicators of typhoon and to develop damage function's indicators, using information derived from the actual loss of typhoon Maemi. As typhoons engender significant financial damage all over the world, governments and insurance companies, local or global, develop hurricane risk assessment models and use it in quantifying, avoiding, mitigating, or transferring the risks. For the reason, it is crucial to understand the importance of the risk assessment model for typhoons, and the importance of reflecting local vulnerabilities for more advanced evaluation. Although much previous research on the economic losses associated with natural disasters has identified the risk indicators that are indispensable, more comprehensive research addressing the relationship between vulnerability and economic loss are still called for. Hence this study utilizes and analyzes the actual loss record of the typhoon Maemi provided by insurance companies to fill such gaps. In this study, natural disaster indicators and basic building information indicators are used in order to generate the vulnerability functions; and the results and indicators suggest a practical approach to create the vulnerability functions for insurance companies and administrative tasks, while reflecting the financial loss and local vulnerability of the actual buildings.

  • PDF

A probabilistic analytical seismic vulnerability assessment framework for substandard structures in developing countries

  • Kyriakides, Nicholas;Ahmad, Sohaib;Pilakoutas, Kypros;Neocleous, Kyriacos;Chrysostomou, Christis
    • Earthquakes and Structures
    • /
    • v.6 no.6
    • /
    • pp.665-687
    • /
    • 2014
  • This paper presents a framework for analytical seismic vulnerability assessment of substandard reinforced concrete (RC) structures in developing countries. Amodified capacity-demand diagram method is used to predict the response of RC structures with degrading behaviour. A damage index based on period change is used to quantify the evolution of damage. To demonstrate the framework, a class of substandard RC buildings is examined. Abrupt accumulation of damage is observed due to the brittle failure modes and this is reflected in the developed vulnerability curves, which differ substantially from the curves of ductile structures.

Calculation of the Area of Vulnerability to Voltage Sags by using Impedance Building Algorithm (임피던스 행렬 구성법을 이용한 순간전압강하 취약지역의 계산)

  • Park, Jong-Il;Park, Chang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.44-53
    • /
    • 2012
  • This paper presents a method to calculate the area of vulnerability by using the impedance building algorithm. The installation of DG (Distributed Generation) is one of the countermeasures against voltage sags in power systems. In order to estimate the effect of the DG, the voltage sag assessment should be performed based on the area of vulnerability and system fault statistics. To determine the area of vulnerability, system impedance matrix should be calculated. The calculation of the impedance matrix of large systems is time-consuming task. This paper addresses an effective scheme to calculate the area of vulnerability and system impedance matrix.

Vulnerability assessment of drought of small island areas in Korea (읍면 단위 도서지역의 가뭄 취약성 평가)

  • Shim, Intae;Hong, Bongchang;Kim, Eunju;Hwang, Tae-Mun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.5
    • /
    • pp.341-351
    • /
    • 2019
  • The purpose of this study was to evaluate vulnerability of drought in small island areas. Vulnerability assessment factors of drought were selected by applying the factor analysis. Ninety Eup/Myon areas in small island were evaluated to vulnerability of drought by entropy method adapting objective weights. Vulnerability consisted of climate exposure, sensitivity, and adaptive capacity. A total of 22 indicators were used to evaluate and analyze vulnerability of drought in small island areas. The results of entropy method showed that winter rainfall, no rainfall days, agricultural population rate, cultivation area rate, water supply rate and groundwater capacity have a significant impact on drought assessment. The overall assessment of vulnerability indicated that Seodo-myeon Ganghwa-gun, Seolcheon-myeon Namhae-gun and Samsan-myeon Ganghwa-gun were the most vulnerable to drought. Especially Ganghwa-gun should be considered policy priority to establish drought measures in the future, because it has a high vulnerability of drought.

A Basic Study on the Derivation of Vulnerability Factors for Safety Management of old Buildings (노후 건축물의 안전관리를 위한 취약성 요소 도출 기본연구)

  • Oh, Gyuho;Cha, Inhyuck;Ahn, Sungjin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.275-276
    • /
    • 2023
  • In order to prevent disaster risks caused by building aging in advance, the prevailing opinion is that it is urgent to actively improve systems such as mandatory safety inspections, and to calculate risks and develop safety management systems due to building aging. The need for systematic risk management continues to be emphasized in the process of safety inspection and repair of old buildings, but the risk management and safety management techniques of each construction entity have not been established in practice. Accordingly, this study aims to analyze the vulnerability factors of aging buildings and provide basic data on the development of a risk rating calculation model for old buildings and the efficiency of safety management systems in the future.

  • PDF

Seismic assessment of a R/C strategic existing building

  • Mehani, Youcef;Kibboua, Abderrahmane
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.617-634
    • /
    • 2007
  • Algeria is a country with a high seismic activity. During the last decade, many destructive earthquakes occurred, particularly in the northern part, causing enormous losses in human lives, buildings and equipments. In order to reduce this risk in the capital and avoid serious damages to the strategic existing buildings, the government decided to invest into seismic upgrade, strengthening and retrofitting of these buildings. In doing so, seismic vulnerability study of this category of buildings has been considered. Structural analysis is performed on the basis of site investigation (inspection of the building, collecting data, materials, general conditions of the building, etc), and existing drawings (architectural plans, structural design, etc). The aim of these seismic vulnerability studies is to develop guidelines and a methodology for rehabilitation of existing buildings. This paper will provide insight to the vulnerability assessment and strengthening of the telecommunication centre, according to the new code RPA 99/version 2003. Both, static equivalent method and non linear dynamic analysis are performed in this study.

Seismic vulnerability assessment of masonry facade walls: development, application and validation of a new scoring method

  • Ferreira, Tiago M.;Vicentea, Romeu;Varum, Humberto
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.541-561
    • /
    • 2014
  • This paper approaches the issue of seismic vulnerability assessment strategies for facade walls of traditional masonry buildings through the development of a methodology and its subsequent application to over 600 building facades from the old building stock of the historic city centre of Coimbra. Using the post-earthquake damage assessment of masonry buildings in L'Aquila, Italy, an analytical function was developed and calibrated to estimate the mean damage grade for masonry facade walls. Having defined the vulnerability function for facade walls, damage scenarios were calculated and subsequently used in the development of an emergency planning tool and in the elaboration of an access route proposal for the case study of the historic city centre of Coimbra. Finally, the methodology was pre-validated through the comparison of a set of results obtained from its application and also resourcing to a widely accepted mechanical method on the description of the out-of-plane behaviour of facade walls.

Vulnerability assessment of strategic buildings based on ambient vibrations measurements

  • Mori, Federico;Spina, Daniele
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.2
    • /
    • pp.115-132
    • /
    • 2015
  • This paper presents a new method for seismic vulnerability assessment of buildings with reference to their operational limit state. The importance of this kind of evaluation arises from the civil protection necessity that some buildings, considered strategic for seismic emergency management, should retain their functionality also after a destructive earthquake. The method is based on the identification of experimental modal parameters from ambient vibrations measurements. The knowledge of the experimental modes allows to perform a linear spectral analysis computing the maximum structural drifts of the building caused by an assigned earthquake. Operational condition is then evaluated by comparing the maximum building drifts with the reference value assigned by the Italian Technical Code for the operational limit state. The uncertainty about the actual building seismic frequencies, typically significantly lower than the ambient ones, is explicitly taken into account through a probabilistic approach that allows to define for the building the Operational Index together with the Operational Probability Curve. The method is validated with experimental seismic data from a permanently monitored public building: by comparing the probabilistic prediction and the building experimental drifts, resulting from three weak earthquakes, the reliability of the method is confirmed. Finally an application of the method to a strategic building in Italy is presented: all the procedure, from ambient vibrations measurement, to seismic input definition, up to the computation of the Operational Probability Curve is illustrated.

Seismic vulnerability assessment of composite reinforced concrete-masonry building

  • Remki, Mustapha;kehila, Fouad;Bechtoula, Hakim;Bourzam, Abdelkrim
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.371-386
    • /
    • 2016
  • During the last decades, many destructive earthquakes occurred in Algeria, particularly in the northern part of the country (Chlef (1980), Constantine (1985), Tipaza (1989), Mascara (1994), Ain-Benian (1996), Ain Temouchent (1999), Beni Ourtilane (2000), and recently $Boumerd{\acute{e}}s$ (2003), causing enormous losses in human lives, buildings and equipments. In order to reduce this risk and avoid serious damages to the strategic existing buildings, the authorities of the country, aware of this risk and in order to have the necessary elements that let them to know and estimate the potential losses in advance, with an acceptable error, and to take the necessary countermeasures, decided to invest into seismic upgrade, strengthening and retrofitting of those buildings. To do so, seismic vulnerability study of this category of buildings has been considered. Structural analysis is performed based on the site investigation (inspection of the building, collecting data, materials characteristics, general conditions of the building, etc.), and existing drawings (architectural plans, structural design, etc.). The aim of these seismic vulnerability studies is to develop guidelines and a methodology for rehabilitation of existing buildings. This paper presents the methodology, based on non linear and seismic analysis of existing buildings, followed in this study and summarizes the vulnerability assessment and strengthening of one of the strategic buildings according to the new Algerian code RPA 99/version 2003. As a direct application of this methodology, both, static equivalent method and non linear dynamic analysis, of composite concrete masonry existing building in the city of "CONSTANTINE", located in the east side of ALGERIA, are presented in this paper.