• 제목/요약/키워드: building use classification

검색결과 158건 처리시간 0.03초

Effect of Prior Probabilities on the Classification Accuracy under the Condition of Poor Separability

  • Kim, Chang-Jae;Eo, Yang-Dam;Lee, Byoung-Kil
    • 한국측량학회지
    • /
    • 제26권4호
    • /
    • pp.333-340
    • /
    • 2008
  • This paper shows that the use of prior probabilities of the involved classes improve the accuracy of classification in case of poor separability between classes. Three cases of experiments are designed with two LiDAR datasets while considering three different classes (building, tree, and flat grass area). Moreover, random sampling method with human interpretation is used to achieve the approximate prior probabilities in this research. Based on the experimental results, Bayesian classification with the appropriate prior probability makes the improved classification results comparing with the case of non-prior probability when the ratio of prior probability of one class to that of the other is significantly different to 1.0.

SpaceNet 건물 데이터셋과 Context-based ResU-Net을 이용한 건물 자동 추출 (Automatic Building Extraction Using SpaceNet Building Dataset and Context-based ResU-Net)

  • 유수홍;김철환;권영목;최원준;손홍규
    • 대한원격탐사학회지
    • /
    • 제38권5_2호
    • /
    • pp.685-694
    • /
    • 2022
  • 건물 정보는 다양한 도시 공간 분석에 활용되는 필수 정보 중 하나이기에 지속적인 모니터링이 필요하지만 현실적으로 어려움이 존재하고 있다. 이를 위해 광범위한 지역에 대해서도 지속적인 관찰이 가능한 위성영상으로부터 건물을 추출하기 위한 연구가 진행되고 있으며, 최근에는 딥러닝 기반의 시맨틱 세그멘테이션 기법들이 활용되고 있다. 본 연구에서는 SpaceNet의 건물 v2 무료 오픈 데이터를 이용하여 30 cm 급 Worldview-3 RGB 영상으로부터 건물을 자동으로 추출하기 위해, context-based ResU-Net의 일부 구조를 변경하여 학습을 진행하였다. 분류 정확도 평가 결과, f1-score가 2회차 SpaceNet 대회 수상작의 분류 정확도보다 높은 것으로 나타났다. 앞으로 지속적으로 Worldview-3 위성 영상을 확보할 수 있다면 본 연구의 성과를 활용하여 전세계 건물 자동 추출 모델을 제작하는 것도 가능할 것으로 판단된다.

논항 정보 기반 "요리 동사"의 어휘의미망 구축 방안 (The Construction of Semantic Networks for Korean "Cooking Verb" Based on the Argument Information.)

  • 이숙의
    • 한국어학
    • /
    • 제48권
    • /
    • pp.223-268
    • /
    • 2010
  • The purpose of this paper is to build a semantic networks of the 'cooking class' verb (based on 'CoreNet' of KAIST). This proceedings needs to adjust the concept classification. Then sub-categories of [Cooking] and [Foodstuff] hierarchy of CoreNet was adjusted for the construction of verb semantic networks. For the building a semantic networks, each meaning of 'Cooking verbs' of Korean has to be analyzed. This paper focused on the Korean 'heating' verbs and 'non-heating'verbs. Case frame structure and argument information were inserted for the describing verb information. This paper use a Propege 3.3 as a tool for building "cooking verb" semantic networks. Each verb and noun was inserted into it's class, and connected by property relation marker 'HasThemeAs', 'IsMaterialOf'.

도로 종류와 도로생애주기별 탄소배출량, 에너지소모량 및 비용에 대한 거시적 분석방법 (Macro-level Methodology for Estimating Carbon Emissions, Energy Use, and Cost by Road Type and Road Life Cycle)

  • 허혜정;백종대
    • 한국도로학회논문집
    • /
    • 제17권2호
    • /
    • pp.143-150
    • /
    • 2015
  • PURPOSES : The authors set out to estimate the related carbon emissions, energy use, and costs of the national freeways and highways in Korea. To achieve this goal, a macro-level methodology for estimating those amounts by road type, road structure type, and road life cycle was developed. METHODS : The carbon emissions, energy use, and costs associated with roads vary according to the road type, road structure type, and road life cycle. Therefore, in this study, the road type, road structure type, and road life cycle were classified into two or three categories based on criteria determined by the authors. The unit amounts of carbon emissions and energy use per unit road length by classification were estimated using data gathered from actual road samples. The unit amounts of cost per unit road length by classification were acquired from the standard cost values provided in the 2013 road business manual. The total carbon emissions, energy use, and cost of the national freeways and highways were calculated by multiplying the road length by the corresponding unit amounts. RESULTS: The total carbon emissions, energy use, and costs associated with the national freeways and highways in Korea were estimated by applying the estimated unit amounts and the developed method. CONCLUSIONS: The developed method can be employed in the road planning and design stage when decision makers need to consider the impact of road construction from an environmental and economic point of view.

조직이론의 관점에서 본 오피스 공간 계획유형에 관한 연구 (A Study on Typological classification of Office Layouts based on Organization Theories)

  • 홍기남;권영;최왕돈
    • 한국실내디자인학회:학술대회논문집
    • /
    • 한국실내디자인학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.39-43
    • /
    • 2003
  • This study aimed to understand changing of work organization on variation of social organization and research typological classification of office layout based on preceded understanding. Buildings result from social needs and accommodate a variety of functions-economic, social, political, religious and cultural. Therefore, We can explain historical development of the constructing a building we understand the society and studying, After The modern age, it select a three buildings that there is an historical value of office Layouts planning and comprehend that make use sampling type of office work structure, studies a felicitous Typological classification of office Layouts. They find the development direction of a hereafter office of the task organization out according to it, And we suggest to Typological classification of Office Layouts based on Organization Theories.

  • PDF

Fault Classification in Phase-Locked Loops Using Back Propagation Neural Networks

  • Ramesh, Jayabalan;Vanathi, Ponnusamy Thangapandian;Gunavathi, Kandasamy
    • ETRI Journal
    • /
    • 제30권4호
    • /
    • pp.546-554
    • /
    • 2008
  • Phase-locked loops (PLLs) are among the most important mixed-signal building blocks of modern communication and control circuits, where they are used for frequency and phase synchronization, modulation, and demodulation as well as frequency synthesis. The growing popularity of PLLs has increased the need to test these devices during prototyping and production. The problem of distinguishing and classifying the responses of analog integrated circuits containing catastrophic faults has aroused recent interest. This is because most analog and mixed signal circuits are tested by their functionality, which is both time consuming and expensive. The problem is made more difficult when parametric variations are taken into account. Hence, statistical methods and techniques can be employed to automate fault classification. As a possible solution, we use the back propagation neural network (BPNN) to classify the faults in the designed charge-pump PLL. In order to classify the faults, the BPNN was trained with various training algorithms and their performance for the test structure was analyzed. The proposed method of fault classification gave fault coverage of 99.58%.

  • PDF

안전성 향상을 위한 도로터널 등급에 관한 연구 (A Study of Classification of Road Tunnel for Fire Safety)

  • 유지오;이동호;신현준
    • 한국안전학회지
    • /
    • 제20권3호
    • /
    • pp.112-119
    • /
    • 2005
  • In road tunnel, in order to prevents an accident and minimize the damage of an accident in the case of fire, safety facilities and equipments are integral parts. The type and amount of safety facilities are based on tunnel type and length, traffic flow rate, etc. Therefore many countries use a tunnel classification system that categories tunnel into groups, and specifies the necessary emergency equipment for each group. In this study, for the purpose of classifying tunnel based on tunnel ist investigated the domestic and foreign standards and regulations for safety of road tunnel. As a results, we suggest the method of classification of tunnel by traffic performance, tunnel grade, the volume of traffic, fraction of HGV, rules or regulations for transports of dangerous good through tunnel.

"대" 지목에 의거한 온실가스 분포의 공간성 평가 (Evaluating Spatiality of Green-House Gas Emission in Building Site)

  • 김준현;엄정섭
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2010년도 춘계학술대회
    • /
    • pp.94-102
    • /
    • 2010
  • 오늘날 지목은 토지의 이용용도나 이용형태를 결정짓는 가장 구체적인 법률적 기준이 되고 있다. 지목은 토지의 주된 사용용도에 따라 분류되기 때문에 주 사용용도가 동일하다면 모두 같은 지목으로 결정하고 있다. 동일한 "대" 지목이라 하더라도 구체적으로는 단독주택, 연립주택, 다세대주택, 빌라, 아파트, 주상복합, 상업 업무용, 나대지 등으로 다양하게 이용되고 있어 그 명확한 구분이나 분류기준 등에 있어 한계성을 가지고 있으며 녹색성장을 위한 온실가스 배출실태나 감축 또는 통계산정에 있어서 용도별 배출특성을 다양하게 분석 할 필요성이 제기되고 있다. 그래서 본 연구는 기관별 다른 분류체계를 가진 5개의 도면을 중심으로 이산화탄소 배출량을 실제로 측정하여 분석한 결과 계절별은 겨울, 봄, 가을, 여름순으로 측정 되었으며, 겨울과 여름의 가장 큰 분포특성은 1.78배, 평균 1.35배가 높게 나타났으며, 오전 9시와 15시의 기온이 약 $11^{\circ}C$ 변화할 때 22ppm으로 오후가 높게 측정되었다 용도별로 분석한 결과 단독주택에 비해 상업 업무용은 4.04배, 주상복합은 1.47배나 높게 배출되었다.

  • PDF

계측데이터를 이용한 업무시설에서의 에너지용도별 사용량 추정방법 연구 (Estimation Method of Energy Consumption by End-Use in Office Buildings based on the Measurement Data)

  • 김성임;양인호;하수연;이수진;진혜선;서인애;송승영
    • 대한건축학회논문집:구조계
    • /
    • 제36권5호
    • /
    • pp.165-176
    • /
    • 2020
  • The purpose of this study is to develop a estimation method of energy consumption by end-use in office buildings. For this, the current status of information on building energy use was investigated, and the domestic and foreign literature on the classification of energy use in non-residential buildings and the estimation method of energy use were reviewed. In addition, the characteristics of energy consumption by end-use were analyzed with measurement data of 48 office buildings in Seoul. As results, the annual and monthly estimation method of energy consumption by end-use in office buildings using public and measurement data was presented, and the applicability of the estimation method was examined by applying to sample office buildings.

쉴드 TBM 데이터와 머신러닝 분류 알고리즘을 이용한 암반 분류 예측에 관한 연구 (A Study on the Prediction of Rock Classification Using Shield TBM Data and Machine Learning Classification Algorithms)

  • 강태호;최순욱;이철호;장수호
    • 터널과지하공간
    • /
    • 제31권6호
    • /
    • pp.494-507
    • /
    • 2021
  • TBM의 활용이 증가하면서 최근 국내에서도 머신러닝 기법으로 TBM 데이터를 분석하여 TBM 전방의 지반을 예측하고 디스크커터의 교환주기 예측 및 굴진율을 예측하는 연구가 수행되고 있다. 본 연구에서는 TBM 굴진 시 기계 데이터를 대상으로 전통적 암반에 대한 분류 기법과 최근에 다양한 분야에서 널리 사용되고 있는 머신러닝 기법들을 접목하여 슬러리 쉴드 TBM 현장의 암반 특성에 대한 분류 예측을 하였다. 암반 특성 분류 기준 항목을 RQD, 일축압축강도, 탄성파속도로 설정하고 항목별 암반상태를 클래스 0(양호),1(보통),2(불량)의 3개 클래스로 구분한 다음, 6개의 분류 알고리즘에 대한 기계학습을 수행하였다. 그 결과, 앙상블 계열의 모델이 좋은 성능을 보여주었고 특히 학습성능과 더불어 학습속도에서 우수한 결과를 보인 LigthtGBM 모델이 대상 현장 지반에서 최적인 것으로 나타났다. 본 연구에서 설정한 3가지 암반 특성에 대한 분류 모델을 활용하면 지반정보가 제공되지 않은 구간에 대한 암반 상태를 제공할 수 있어 굴착작업 시 도움을 줄 수 있을 것으로 판단된다.