• Title/Summary/Keyword: building technology

Search Result 7,883, Processing Time 0.034 seconds

The Old Future of Christian Education : Education for Shalom - Thoughts on UNESCO 2050 - (기독교교육의 오래된 미래 : 샬롬을 위한 교육 - UNESCO 교육의 미래 2050에 대한 소고 -)

  • Mikyoung Seo
    • Journal of Christian Education in Korea
    • /
    • v.76
    • /
    • pp.119-147
    • /
    • 2023
  • Purpose of study: The purpose of this study is to propose an education for biblical Shalom for the future of education in relation to UNESCO 2050. Research content and method: The education for Shalom is about experiencing Shalom in fellowship with God. Moreover, it expands that shalom into relationships with self, neighbors, the earth, and technology, and then helps achieving balance between Shalom and those mentioned above. In order to provide education for Shalom, this study presented five relational dimensions of experiencing Shalom. First, the joy of serving God and neighbors in a proper personal relationship with God is most important. Second, it is the joy of building a right community and living in it through harmonious relationships with neighbors. Third, it is the joy of living in a harmonious relationship with nature. Fourth, it is the joy of being respected for human rights that are dignified as the image of God and living while enjoying rights. Fifth, it is the joy of enjoying fair use and benefits from technological innovation without being alienated, excluded and treated unfairly, or receiving disadvantages. Based on that, a model of education for Shalom has been developed. Conclusions and Suggestions: The educational model for Shalom forms view of values, knowledge, and human nature through the Bible. It consists of learning strategies to maintain a balance between the form of knowledge and the five relational dimensions. This model has a structure that carries out education for Shalom while interacting with each other.

A Development of Flood Mapping Accelerator Based on HEC-softwares (HEC 소프트웨어 기반 홍수범람지도 엑셀러레이터 개발)

  • Kim, JongChun;Hwang, Seokhwan;Jeong, Jongho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.173-182
    • /
    • 2024
  • In recent, there has been a trend toward primarily utilizing data-driven models employing artificial intelligence technologies, such as machine learning, for flood prediction. These data-driven models offer the advantage of utilizing pre-training results, significantly reducing the required simulation time. However, it remains that a considerable amount of flood data is necessary for the pre-training in data-driven models, while the available observed data for application is often insufficient. As an alternative, validated simulation results from physically-based models are being employed as pre-training data alongside observed data. In this context, we developed a flood mapping accelerator to generate flood maps for pre-training. The proposed accelerator automates the entire process of flood mapping, i.e., estimating flood discharge using HEC-1, calculating water surface levels using HEC-RAS, simulating channel overflow and generating flood maps using RAS Mapper. With the accelerator, users can easily prepare a database for pre-training of data-driven models from hundreds to tens of thousands of rainfall scenarios. It includes various convenient menus containing a Graphic User Interface(GUI), and its practical applicability has been validated across 26 test-beds.

Sensitivity analysis of grid size for bubble flow field analysis using image analysis methods (영상분석기법 기반 기포유동장 해석을 위한 격자의 민감도 분석)

  • Kim, Sung Jung;Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.8
    • /
    • pp.549-559
    • /
    • 2024
  • This study aims to investigate the feasibility of using image analysis methods to examine the flow characteristics of air bubbles discharged underwater. A bubble screen was created using multiple nozzles in a laboratory flume filled with stagnant water. The flow characteristics of the bubbles were analyzed, and the suitability of the analysis method was evaluated. Several parameters, such as projection area ratio and depth ratio, were defined to conduct laboratory experiments and analyze the flow characteristics of the bubbles. Correlation and regression analyses were performed to assess the relationships between various variables. Specifically, the correlation between the bubble's projection area and its rising speed across eight water depth ratios was examined. The results indicated that as the depth ratio increased, the bubble size exhibited a linear increase with a strong correlation as it rose to the water surface due to pressure effects. Regarding the sensitivity of different grid sizes in the ten analysis grids when applying image analysis methods, it was observed that the sensitivity to grid size based on the projection area ratio (0.09~0.96) was not significant. These findings suggest that image analysis techniques can be effectively utilized to observe the flow characteristics of bubbles.

Study on Outlier Analysis Considering the Spatial Distribution of Intelligent Compaction Measurement Values (지능형 다짐값의 공간적 분포를 고려한 이상치 분석 기법 연구)

  • Chung, Taek-Kyu;Cho, Jin-Woo;Chung, Choong-Ki;Baek, Sung-Ha
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.91-103
    • /
    • 2024
  • In this study, we propose an outlier detection method that considers the spatial distribution of intelligent compaction measurement values (ICMVs) to address the high variability of ICMVs measured continuously across an entire construction area. The proposed method initially identified cases where the CMV at a specific location decreased despite an increase in the number of compaction passes. Among these, values that significantly differed from those measured within a 1.5-m radius were classified as outliers. Applying this method to CMV data obtained from field tests, we found that it effectively excluded the influence of changes in roller operating conditions unrelated to compaction quality while considering the inherent heterogeneity of the soil. However, after removing the outliers, the coefficient of variation of CMV (21.4%-26.3%) remained higher than the 20% suggested by relevant standards. Further field tests are needed to modify the proposed outlier detection method and to establish reasonable criteria for the variability of ICMV.

Evaluation of the applicability of a buoyancy-modified turbulence model for free surface flow analysis based on the VOF method (VOF 기반 자유수면 흐름 해석을 위한 부력 수정 난류 모형의 적용성 평가)

  • Lee, Du Hana
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.8
    • /
    • pp.493-507
    • /
    • 2024
  • RANS-based CFD analysis is widely applied in various engineering fields, including practical hydraulic engineering, due to its high computational efficiency. However, problems of non-physical behavior in the analysis of two phase flow, such as free surfaces, have long been raised. The two-equation turbulence models used in general RANS-based analysis were developed for single phase flow and simulate unrealistically high turbulence energy at the interface where there are abrupt changes in fluid density. To solve this issue, one of the methods recently developed is the buoyancy-modified turbulence model, which has been partially validated in coastal engineering, but has not been applied to open channel flows. In this study, the applicability of the buoyancy-modified turbulence model is evaluated using the VOF method in the open-source program OpenFoam. The results of the uniform flow showed that both the buoyancy-modified k-𝜖 model and the buoyancy-modified k-ω SST model effectively simulated the reduction of turbulence energy near the free surface. Specifically, the buoyancy-modified k-ω SST model accurately simulated the vertical velocity distribution. Additionally, the model is applied to dam-break flows to examine cases with significant surface variation and cavity formation. The simulation results show that the buoyancy-modified turbulence models produce varying results depending on the VOF method and shows non-physical behavior different from experimental results. While the buoyancy-modified turbulence model is applicable in cases with stable surface shapes, it still has limitations in general application when there are rapid changes in the free surface. It is concluded that appropriate adjustments to the turbulence model are necessary for flows with rapid surface changes or cavity formation.

Development and Performance Evaluation Results of Remote Control Systems for Maritime Autonomous Surface Ships (자율운항선박의 원격제어 시스템 개발과 성능평가 결과)

  • Hong-Jin Kim;Hwa-Sop Roh;Jeong-Bin Yim
    • Journal of Navigation and Port Research
    • /
    • v.48 no.4
    • /
    • pp.335-341
    • /
    • 2024
  • Recently, research, development, and commercialization of maritime autonomous surface ships (MASS) and remote control are in progress. Remote control is intended to secure autonomous navigation environments for existing ships or early-stage MASS using a remote control system (RCS). The main function of an RCS is to control MASS using data transmission between the MASS and the remote control centre. Remote control by a remote control officer also has an important function. The purpose of this study was to develop RCS and a performance evaluation technique for operation data provided by the RCS. The experiment was conducted during the navigation period of a training ship 'Hannara' after building experimental equipment at both an onshore remote control center and a training ship. As a result of evaluating data transmitted and received using the developed RCS, it was confirmed that data transmission was possible within an error range of 0.1%p. Fourteen types of ship information reflecting the navigation environment of the training ship were confirmed to be transmitted and received. The RCS developed in this work complies with the three principles of remote control: safety, reliability, and availability. This study provides a core technology for the development of RCSs for MASS and the evaluation of data transmission performance.

A Study on the Performance-Based Bridge Asset Valuation Methods Considering Hazard (교량의 위험성을 고려한 성능기반 자산가치 평가방법에 관한 연구)

  • Yong-Jun Lee;Kyung-Hoon Park;Jong-Wan Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.30-37
    • /
    • 2024
  • The valuation of infrastructure assets is typically conducted using the straight-line method, which employs the depreciated replacement cost as a basis. However, this approach has the limitation of failing to accurately reflect the actual value of the facility. In light of these considerations, the performance-based depreciation (PBD) method has been proposed as a means of evaluating the asset value of bridges on the basis of their performance, although it is not designed to take account of the environmental characteristics of individual bridges. This study proposes a hazard-performance based depreciation (HPBD) method that considers the risk level of individual bridges in the PBD method proposed in previous studies. The applicability of the proposed method was evaluated on more than 8,000 bridges. The risk factors for deterioration of bridges were selected, the hazard level of individual bridges was evaluated, and weights based on the hazard level were applied to the PBD method. The evaluation resulted in a present value comparable to that of the PBD method and a relatively high future value. It is postulated that the HPBD method, which considers the risk characteristics of individual bridges, can be used for a more reasonable evaluation and decision-making process.

Correlation Study of Carbonation Analysis Methods for Cement Paste with Fly Ash (플라이애시가 혼입된 시멘트 페이스트의 탄산화 분석방법에 따른 상관관계 연구)

  • Eun-A Seo;Ho-Jae Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.54-61
    • /
    • 2024
  • This study conducted accelerated carbonation experiments on cement pastes using OPC and FA. It derived the correlation of pH prediction methods through component analysis of the carbonated pastes. Analysis of weight change due to thermal decomposition was performed using TG-DTA, and component analysis was conducted using XRF. A comparative review of each experimental result and pH measurement result was carried out. The study proposed a correlation analysis method between the component ratio of CO2 and CaO, the component ratio of calcium carbonate and calcium hydroxide, and pH. By analyzing the relationship between the CO2 components measured by XRF and pH, the correlation coefficients of all mixtures were 0.84 or higher, indicating a strong correlation.The correlation analysis of calcium carbonate and calcium hydroxide with pH using TG-DTA showed that the correlation coefficient for calcium carbonate was more than 0.86 for all formulations. However, the correlation coefficient between calcium hydroxide and pH was low, so a study was conducted to analyze the correlation with pH using the ratio of the results of the two components.

Analysis of Vibration Characteristics Changes in a Single-Span Bridge Due to Temperature Using Continuous Measurement Data (상시 계측 데이터를 이용한 단경간 교량의 온도에 따른 진동 특성 변화 분석)

  • Tae-Ho Kwon;Byeong-Cheol Kim;Ki-Tae Park;Chi-Ho Jeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.62-68
    • /
    • 2024
  • The Republic of Korea experiences four distinct seasons, with significant temperature differences between summer and winter, causing bridges to undergo large temperature variations throughout the year. When the temperature changes, the dynamic characteristics of bridge structures also change. However, during load-bearing capacity assessments in domestic bridge maintenance, this temperature effect is not considered, and only the natural frequency measured over a short period is used for evaluation. In this paper, we theoretically analyze the impact of changes in natural frequency on bridges and extract daily estimated natural frequency data from bridges with continuous vertical acceleration measurements taken over more than a year to confirm temperature-induced changes. The results show that a 1% decrease in natural frequency corresponds to an approximately 2% decrease in the load-bearing capacity of the bridge. Additionally, it was found from the measurement data that a 10℃ increase in temperature did not affect the natural frequency of RC slab bridges and Rahmen bridges, but in PSC-I girder bridges and steel box girder bridges, the natural frequency decreased by approximately 1.04% to 2.48%.

A study on the risk index for tunnel collapse (터널 붕괴 위험도 지수 연구)

  • Jeong-Heum Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.5
    • /
    • pp.421-433
    • /
    • 2024
  • As the utilization of underground space increases, preventing collapse accidents during tunnel construction has become a significant challenge. This study aims to quantitatively assess the risk of tunnel collapse during construction by analyzing various influencing factors and proposing a tunnel collapse risk index based on these factors. For the 14 major influencing factors affecting tunnel collapse, weights were calculated using the analytic hierarchy process (AHP) method. Data from 27 collapse cases were collected, and Monte Carlo simulation was used to calculate the grade scores for each influencing factor. These scores were then synthesized to derive the tunnel collapse risk index. The average value of the tunnel collapse risk index was analyzed to be 49.359 points. Future comparisons with section-by-section evaluation results of tunnel collapse risk will allow for the assessment of whether a specific section has a lower or higher collapse risk. This study provides a systematic method for quantitatively evaluating the key factors of tunnel collapse risk, thereby contributing to the prevention of collapse accidents during tunnel construction and the establishment of appropriate countermeasures. Future research is expected to enhance the reliability of the tunnel collapse risk index by incorporating more field data and improving the accuracy of tunnel collapse risk assessment based on this index.