DOI QR코드

DOI QR Code

Study on Outlier Analysis Considering the Spatial Distribution of Intelligent Compaction Measurement Values

지능형 다짐값의 공간적 분포를 고려한 이상치 분석 기법 연구

  • Chung, Taek-Kyu (Department of Civil and Environmental Engineering, Seoul National Univ.) ;
  • Cho, Jin-Woo (Department of Geotechnical Engineering, Korea Institute of Civil Engineering and Building Technology) ;
  • Chung, Choong-Ki (Department of Civil and Environmental Engineering, Seoul National Univ.) ;
  • Baek, Sung-Ha (School of Civil and Environmental Engineering & Construction Engineering Research Institute, Hankyong National Univ.)
  • 정택규 (서울대학교 건설환경공학부) ;
  • 조진우 (한국건설기술연구원 지반연구본부) ;
  • 정충기 (서울대학교 건설환경공학부) ;
  • 백성하 (한경국립대학교 건설환경공학부)
  • Received : 2024.07.08
  • Accepted : 2024.08.06
  • Published : 2024.08.31

Abstract

In this study, we propose an outlier detection method that considers the spatial distribution of intelligent compaction measurement values (ICMVs) to address the high variability of ICMVs measured continuously across an entire construction area. The proposed method initially identified cases where the CMV at a specific location decreased despite an increase in the number of compaction passes. Among these, values that significantly differed from those measured within a 1.5-m radius were classified as outliers. Applying this method to CMV data obtained from field tests, we found that it effectively excluded the influence of changes in roller operating conditions unrelated to compaction quality while considering the inherent heterogeneity of the soil. However, after removing the outliers, the coefficient of variation of CMV (21.4%-26.3%) remained higher than the 20% suggested by relevant standards. Further field tests are needed to modify the proposed outlier detection method and to establish reasonable criteria for the variability of ICMV.

본 연구에서는 전체 시공영역에 대해 연속적으로 도출되는 지능형 다짐값의 높은 변동성과 관련한 문제를 해결하기 위해서, 지능형 다짐값의 공간적 분포를 고려한 이상치 분석 기법을 제안하였다. 제안된 기법에서는 다짐횟수 증가에도 불구하고 특정 위치에서 측정된 CMV가 감소하는 경우를 1차적으로 선별하고, 유효반경 1.5m 내에서 측정된 값들과의 차이가 큰 값들을 이상치로 판별한다. 본 연구에서 제안된 이상치 분석 기법을 현장시험에서 측정된 CMV 데이터에 적용한 결과, 지반의 내재적 불균질성은 고려하면서 다짐 품질과 관계없는 다짐롤러 구동조건의 변화에 따른 영향만을 배제할 수 있는 것으로 나타났다. 이상치 제거 후 CMV의 변동계수는 21.4~26.3%로 산정되었으며 관련 기준(20%)에서 제시하고 있는 수치보다 크게 나타났다. 추후 제안된 이상치 분석 기법에 여러 현장시험 데이터를 적용하여 고도화하고 지능형 다짐값의 변동성에 대한 합리적인 기준을 제안해야 할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 한경국립대학교 2023년도 학술연구조성비의 지원에 의한 것임.

References

  1. Anderegg, R., von Felten, D., and Kaufmann, K. (2006), "Compaction Monitoring Using Intelligent Soil Compactors", Proceedings of GeoCongress 2006: Geotechnical Engineering in the Information Technology Age, Atlanta, CDROM.
  2. Baek, S.H., Cho, J.W., and Kim, J.Y. (2024a), Field Study on Intelligent Compaction for Compaction Quality Control of Subgrade Base, Canadian Geotechnical Journal (under review).
  3. Baek, S.H., Kim, J.Y., Cho, J.W., Kim, N., Jeong, Y.H., and Choi, C. (2020), "Fundamental Study on Earthwork Quality Control Based on Intelligent Compaction Technology", Journal of the Korean Geotechnical Society, Vol.36, No.12, pp.45-56.
  4. Baek, S.H., Kim, J.Y., Kim, J., and Cho, J.W. (2023), "Field Validation of Earthwork Compaction Quality Control Based on Intelligent Compaction Technology", Journal of the Korean Geotechnical Society, Vol.39, No.11, pp.85-95.
  5. Baek, S.H., Kim, J.Y., Kim, J., and Cho, J.W. (2024b), Framework for Roller-integrated Continuous Compaction Control of Subgrade bases Alongside Dynamic Cone Penetrometer (DCP) and Light Weight Deflectometer (LWD), Automation in Construction (under review).
  6. Brown, C. E. (1998), Coefficient of Variation. In Applied Multivariate Statistics in Geohydrology and Related Sciences (pp.155-157), Berlin, Heidelberg: Springer Berlin Heidelberg.
  7. Caicedo, B. (2018), Geotechnics of Roads: Fundamentals, CRC Press.
  8. Cao, L., Zhou, J., Li, T., Chen, F., and Dong, Z. (2021), "Influence of Roller-related Factors on Compaction Meter Value and its Prediction Utilizing Artificial Neural Network", Construction and Building Materials, Vol.268, 121078.
  9. Choe, J. (2013), Geostatistics, Sigmapress.
  10. Choi, C., Jeong, Y.H., Baek, S.H., Kim, J.Y., Kim, N., and Cho, J.W. (2021), "A Study for Deriving Target CMV (Compaction Meter Value) of Intelligent Compaction Earthwork Quality Control", Journal of the Korean Geotechnical Society, Vol.37, No.9, pp.25-36.
  11. Daw, R.H., Watson, R., and Pearson, E.S. (1972), Miscellanea Studies in the History of Probability and Statistics. XXX. Abraham De Moivre'a 1733 Derivation of the Normal Curve: A Bibliographical Note, Philosophy, Vol.59, No.3.
  12. Erdmann, P., Adam, D., and Kopf, F. (2006), "Finite Element Analyzes of Dynamic Compaction Techniques and Integrated Control Methods", In Numerical Methods in Geotechnical Engineering: Sixth European Conference on Numerical Methods in Geotechnical Engineering (pp.197-203).
  13. FHWA (2014), Intelligent Compaction Technology for Soils Applications, https://www.intelligentconstruction.com/resources/ic-specifications.
  14. Hubert, M. and Vandervieren, E. (2008), "An Adjusted Boxplot for Skewed Distributions", Computational Statistics and Data Analysis, Vol.52, No.12, pp.5186-5201.
  15. ISSMGE (2005), Roller-Integrated Continuous Compaction Control (CCC): Technical Contractual Provisions, Recommendations, TC3: Geotechnics for Pavements in Transportation Infrastructure. International Society for Soil Mechanics and Geotechnical Engineering.
  16. Kim, J. (2006), "Weight Reduction Method for Outlier in Survey Sampling", The Korean Communications in Statistics, Vol.13, No.1, pp.19-27.
  17. KS F 2312 (2022), Standard Test Method for Soil Compaction in Laboratory.
  18. Kumar, A., Sankalp, S., and Remesan, R. (2023), "Spatiotemporal Rainfall Variability and Trend Analysis Over All the Districts of West Bengal during 1980-2021", Developments in Environmental Science, Vol.14, pp.1-15.
  19. Kwak, S.K. and Kim, J.H. (2017), "Statistical Data Preparation: Management of Missing Values and Outliers", Korean Journal of Anesthesiology, Vol.70, No.4, pp.407-411.
  20. Leys, C., Ley, C., Klein, O., Bernard, P., and Licata, L. (2013), "Detecting Outliers: Do Not Use Standard Deviation Around the Mean, Use Absolute Deviation Around the Median", Journal of Experimental Social Psychology, Vol.49, No.4, pp.764-766.
  21. Lightfoot, E. and O'Connell, T. C. (2016), "On the Use of Bio-mineral Oxygen Isotope Data to Identify Human Migrants in the Archaeological Record: Intra-sample Variation, Statistical Methods and Geographical Considerations", PloS one, Vol.11, No.4.
  22. Meehan, C.L., Cacciola, D.V., Tehrani, F.S., and Baker, W.J. (2017), "Assessing Soil Compaction Using Continuous Compaction Control and Location-specific in Situ Tests", Automation in Construction, Vol.73, pp.31-44.
  23. Ministry of Land, Infrastructure and Transport (2021), Korean Construction Specification for Intelligent Compaction (KCS 10 70 20 : 2021).
  24. Ministry of Land, Infrastructure and Transport (2023), Korean Construction Specification for Earthworks (KCS 11 20 20 : 2023).
  25. Moivre, A. (2013), The Doctrine of Chances or, a Method of Calculating the Probability of Events in Play, Cambridge University Press.
  26. Mooney, M.A. (2010), Intelligent Soil Compaction Systems (Vol. 676). Transportation Research Board.
  27. ROAD 94. (1994), General Technical Construction Specification for Roads - Unbound Pavement Layers, Road and Traffic Division, Sweden.
  28. RVS (1999), Continuous Compactor Integrated Compaction - Proof (Proof of Compaction), Technical Contract Stipulations RVS 8S.02.6 - Earthworks. Vienna: Federal Ministry for Economic Affairs.
  29. Sandstrom, A. and Pettersson, C. (2004), Intelligent Systems for QA/QC in Soil Compaction, Proceedings of Annual Transportation Research Board Meeting, Transportation Research Board, Washington, D.C., CD-ROM.
  30. Santos, F. (2020), Modern Methods for Old Data: An Overview of Some Robust Methods for Outliers Detection with Applications in Osteology, Journal of Archaeological Science: Reports, 32.
  31. Thompson, M.J. and White, D.J. (2007), "Field Calibration and Spatial Analysis of Compaction Monitoring Technology Measurements", Transportation Research Record, Vol.2004, No.1, pp.69-79.
  32. Thurner, H. and Sandstrom, A. (1980), A New Device for Instant Compaction Control, Proceedings of International Conference on Compaction, Vol.II, Assoc. Amicale de Ingenieus, Paris, pp.611-614.
  33. Tukey, J. W. (1977), Exploratory Data Analysis, Reading, MA: Addison-wesley, 2, pp.131-160.
  34. Vennapusa, P.K., White, D.J., Morris, M.D. (2010), "Geostatistical Analysis for Spatially Referenced Roller-integrated Compaction Measurements", Journal of Geotechnical and Geoenvironmental Engineering, Vol.136, No.6, pp.813-822.
  35. White, D.J. (2008), Report of the Workshop on Intelligent Compaction for Soils and HMA, ER08-01, April 2-4, 2008, Des Moines, Iowa, Iowa State University, Ames, Iowa.
  36. White, D.J. and Thompson, M.J. (2008), "Relationships between in Situ and Roller-integrated Compaction Measurements for Granular Soils", Journal of Geotechnical and Geoenvironmental Engineering, Vol.134, No.12, pp.1763-1770.
  37. White, D.J., Thompson, M.J., Vennapusa, P.K., and Siekmeier, J. (2008), "Implementing Intelligent Compaction Specification on Minnesota TH-64: Synopsis of Measurement Values, Data Management, and Geostatistical Analysis", Transportation Research Record, Vol.2045, No.1, pp.1-9.
  38. White, D.J., Vennapusa, P.K., and Gieselman, H.H. (2011), "Field Assessment and Specification Review for Roller? Integrated Compaction Monitoring Technologies", Advances in Civil Engineering, Vol.2011, No.1, 783836.
  39. White, D.J., Vennapusa, P.K., and Thompson, M.J. (2007), Field Validation of Intelligent Compaction Monitoring Technology for Unbound Materials.