• Title/Summary/Keyword: building response

Search Result 1,906, Processing Time 0.023 seconds

Experimental Study on Active Control of Building Structures by Feedback Variables (피드백 변화에 따른 건물의 능동제어 실험)

  • 민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.286-294
    • /
    • 1998
  • This paper presents an experimental study on the performance of the active damper device by feedback variables. The damper is a mass-typed active device, which exerts the inertia control force on the building by AC servo motor. The control performance is experimentally analyzed considering the building response and the control force. It is found that the building response is greatly reduced by mass-typed device under the resonant and earthquake loading. Also, the experimental results show that the velocity feedback reduces the building responses with the smallest amount of control force than any other feedback variables.

  • PDF

Design of an actuator for simulating wind-induced response of a building structure

  • Park, Eun Churn;Lee, Sang-Hyun;Min, Kyung-Won;Chung, Lan;Lee, Sung-Kyung;Cho, Seung-Ho;Yu, Eunjong;Kang, Kyung-Soo
    • Smart Structures and Systems
    • /
    • v.4 no.1
    • /
    • pp.85-98
    • /
    • 2008
  • In this paper, excitation systems using a linear mass shaker (LMS) and an active tuned mass damper (ATMD) are presented to simulate the wind induced responses of a building structure. The actuator force for the excitation systems is calculated by using the inverse transfer function of a target structural response to the actuator. Filter and envelop functions are used to prevent the actuator from exciting unexpected modal responses and an initial transient response and thus, to minimize the error between the wind and actuator induced responses. The analyses results from a 76-story benchmark building problem for which the wind load obtained by a wind tunnel test is given, indicate that the excitation system installed at a specific floor can approximately reproduce the structural responses induced by the wind load applied to each floor of the structure. The excitation system designed by the proposed method can be effectively used for evaluating the wind response characteristics of a practical building structure and for obtaining an accurate analytical model of the building under wind load.

Spatiotemporal Routing Analysis for Emergency Response in Indoor Space

  • Lee, Jiyeong;Kwan, Mei-Po
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.6
    • /
    • pp.637-650
    • /
    • 2014
  • Geospatial research on emergency response in multi-level micro-spatial environments (e.g., multi-story buildings) that aims at understanding and analyzing human movements at the micro level has increased considerably since 9/11. Past research has shown that reducing the time rescuers needed to reach a disaster site within a building (e.g., a particular room) can have a significant impact on evacuation and rescue outcomes in this kind of disaster situations. With the purpose developing emergency response systems that are capable of using complex real-time geospatial information to generate fast-changing scenarios, this study develops a Spatiotemporal Optimal Route Algorithm (SORA) for guiding rescuers to move quickly from various entrances of a building to the disaster site (room) within the building. It identifies the optimal route and building evacuation bottlenecks within the network in real-time emergency situations. It is integrated with a Ubiquitous Sensor Network (USN) based tracking system in order to monitor dynamic geospatial entities, including the dynamic capacities and flow rates of hallways per time period. Because of the limited scope of this study, the simulated data were used to implement the SORA and evaluate its effectiveness for performing 3D topological analysis. The study shows that capabilities to take into account detailed dynamic geospatial data about emergency situations, including changes in evacuation status over time, are essential for emergency response systems.

A Study on the Acceleration Response Amplification Ratio of Buildings and Non-structural Components Considering Long-Period Ground Motions (장주기 지진동을 고려한 건축물 및 비구조요소의 가속도 응답 증폭비)

  • Oh, Sang Hoon;Kim, Ju Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Structures of high-rise buildings are less prone to earthquake damage. This is because the response acceleration of high-rise buildings appears to be small by generally occurring short-period ground motions. However, due to the increased construction volume of high-rise buildings and concerns about large earthquakes, long-period ground motions have begun to be recognized as a risk factor for high-rise buildings. Ground motion observed on each floor of the building is affected by the eigenmode of the building because the ground motion input to the building is amplified in the frequency range corresponding to the building's natural frequency. In addition, long-period components of ground motion are more easily transmitted to the floor or attached components of the building than short-period components. As such, high-rise buildings and non-structural components pose concerns about long-period ground motion. However, the criteria (ASCE 7-22) underestimate the acceleration response of buildings and non-structural components caused by long-period ground motion. Therefore, the characteristics of buildings' acceleration response amplification ratio and non-structural components were reviewed in this study through shake table tests considering long-period ground motions.

Peak seismic response of a symmetric base-isolated steel building: near vs. far fault excitations and varying incident angle

  • Pavlidou, Constantina;Komodromos, Petros
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.349-365
    • /
    • 2020
  • Since the peak seismic response of a base-isolated building strongly depends on the characteristics of the imposed seismic ground motion, the behavior of a base-isolated building under different seismic ground motions is studied, in order to better assess their effects on its peak seismic response. Specifically, the behavior of a typical steel building is examined as base-isolated with elastomeric bearings, while the effect of near-fault ground motions is studied by imposing 7 pairs of near- and 7 pairs of far-fault seismic records, from the same 7 earthquake events, to the building, under 3 different loading combinations, through three-dimensional (3D) nonlinear dynamic analyses, conducted with SAP2000. The results indicate that near-fault seismic components are more likely to increase the building's peak seismic response than the corresponding far-fault components. Furthermore, the direction of the imposed earthquake excitations is also varied by rotating the imposed pairs of seismic records from 0◦ to 360◦, with respect to the major construction axes. It is observed that the peak seismic responses along the critical incident angles, which in general differ from the major horizontal construction axes of the building, are significantly higher. Moreover, the influence of 5% and 10% accidental mass eccentricities is also studied, revealing that when considering accidental mass eccentricities the peak relative displacements of the base isolated building at the isolation level are substantially increased, while the peak floor accelerations and interstory drifts of its superstructure are only slightly affected.

Response spectrum analysis for regular base isolated buildings subjected to near fault ground motions

  • Moussa, Leblouba
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.527-543
    • /
    • 2012
  • This paper presents a response spectrum analysis procedure suitable for base isolated regular buildings subjected to near fault ground motions. This procedure is based on the fact that the isolation system may be treated separately since the superstructure behaves as a rigid body on well selected isolation systems. The base isolated building is decomposed into several single-degree of freedom systems, the first one having the total weight of the building is isolated while the remainder when superposed they replicate approximately the behavior of the superstructure. The response of the isolation system is governed by a response spectrum generated for a single isolated mass. The concept of the procedure and its application for the analysis of base isolated structures is illustrated with an example. The present analysis procedure is shown to be accurate enough for the preliminary design and overcomes the limits of applicability of the conventional linear response spectrum analysis.

Response modification factor of dual moment-resistant frame with buckling restrained brace (BRB)

  • Abdollahzadeh, Gholamreza;Banihashemi, Mohammadreza
    • Steel and Composite Structures
    • /
    • v.14 no.6
    • /
    • pp.621-636
    • /
    • 2013
  • Response modification factor is one of the seismic design parameters to consider nonlinear performance of building structures during strong earthquake, in conformity with the point that many seismic design codes led to reduce the loads. In the present paper it's tried to evaluate the response modification factors of dual moment resistant frame with buckling restrained braced (BRB). Since, the response modification factor depends on ductility and overstrength; the nonlinear static analysis, nonlinear dynamic analysis and linear dynamic analysis have been done on building models including multi-floors and different brace configurations (chevron V, invert V, diagonal and X bracing). The response modification factor for each of the BRBF dual systems has been determined separately, and the tentative value of 10.47 has been suggested for allowable stress design method. It is also included that the ductility, overstrength and response modification factors for all of the models were decreased when the height of the building was increased.

Dynamic wind effects : a comparative study of provisions in codes and standards with wind tunnel data

  • Kijewski, T.;Kareem, A.
    • Wind and Structures
    • /
    • v.1 no.1
    • /
    • pp.77-109
    • /
    • 1998
  • An evaluation and comparison of seven of the world's major building codes and standards is conducted in this study, with specific discussion of their estimations of the alongwind, acrosswind, and torsional response, where applicable, for a given building. The codes and standards highlighted by this study are those of the United States, Japan, Australia, the United Kingdom, Canada, China and Europe. In addition, the responses predicted by using the measured power spectra of the alongwind, acrosswind and torsional responses for several building shapes tested in a wind tunnel are presented and a comparison between the response predicted by wind tunnel data and that estimated by some of the standards is conducted. This study serves not only as a comparison of the response estimates by international codes and standards, but also introduces a new set of wind tunnel data for validation of wind tunnel-based empirical expressions.

Base isolated RC building - performance evaluation and numerical model updating using recorded earthquake response

  • Nath, Rupam Jyoti;Deb, Sajal Kanti;Dutta, Anjan
    • Earthquakes and Structures
    • /
    • v.4 no.5
    • /
    • pp.471-487
    • /
    • 2013
  • Performance of a prototype base isolated building located at Indian Institute of Technology, Guwahati (IITG) has been studied here. Two numbers of three storeyed single bay RCC framed prototype buildings were constructed for experimental purpose at IITG, one supported on conventional isolated footings and the other on a seismic isolation system, consisting of lead plug bearings. Force balance accelerometers and a 12 channel strong motion recorder have been used for recording building response during seismic events. Floor responses from these buildings show amplification for the conventional building while 60 to 70% reduction has been observed for the isolated building. Numerical models of both the buildings have been created in SAP2000 Nonlinear. Infill walls have been modeled as compression struts and have been incorporated into the 3D models using Gap elements. System identification of the recorded data has been carried out using Parametric State Space Modeling (N4SID) and the numerical models have been updated accordingly. The study demonstrates the effectiveness of base isolation systems in controlling seismic response of isolated buildings thereby leading to increased levels of seismic protection. The numerical models calibrated by relatively low level of earthquake shaking provides the starting point for modeling the non-linear response of the building when subjected to strong shaking.

Evaluating Users' Occurrences Number and Interaction of Maintenance Management Personnel's Response for Mechanical Defects Complaint in Complex Building (복합건물에서 사용자의 기계결함민원 원단위 및 유지관리조직 대응의 상호작용 평가)

  • Kwak, Ro-Yeul
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.3
    • /
    • pp.95-102
    • /
    • 2018
  • In order to understand interaction between building users' occupant performance and building maintenance performance of maintenance management personnel, actual data from maintenance activities of buildings were analyzed. Also, using building defect customer complaint data reported by building user, satisfaction data on building maintenance services of building users and service response time of maintenance management personnel, a method for evaluating interaction of buildings with the same purpose and same size was proposed. Throughout analysis, average number of occurrences per unit area per year for the mechanical complaints in complex building were presented. In addition, using building users' satisfaction with facility management services, attitude of responding to business obstacles, number of occurrences per unit area per year of mechanical complaints and complaint processing speed, interaction was comprehensively identified and compared.