• Title/Summary/Keyword: building information modelling

Search Result 91, Processing Time 0.032 seconds

A Geographic Modeling System Using GIS and Real Images (GIS와 실영상을 이용한 지리 모델링 시스템)

  • 안현식
    • Spatial Information Research
    • /
    • v.12 no.2
    • /
    • pp.137-149
    • /
    • 2004
  • For 3D modelling artificial objects with computers, we have to draw frames and paint the facet images on each side. In this paper, a geographic modelling system building automatically 3D geographic spaces using GIS data and real images of buildings is proposed. First, the 3D model of terrain is constructed by using TIN and DEM algorithms. The images of buildings are acquired with a camera and its position is estimated using vertical lines of the image and the GIS data. The height of the building is computed with the image and the position of the camera, which used for making up the frames of buildings. The 3D model of the building is obtained by detecting the facet iamges of the building and texture mapping them on the 3D frame. The proposed geographical modeling system is applied to real area and shows its effectiveness.

  • PDF

Accuracy Comparison Between Image-based 3D Reconstruction Technique and Terrestrial LiDAR for As-built BIM of Outdoor Structures

  • Lee, Jisang;Hong, Seunghwan;Cho, Hanjin;Park, Ilsuk;Cho, Hyoungsig;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.557-567
    • /
    • 2015
  • With the increasing demands of 3D spatial information in urban environment, the importance of point clouds generation techniques have been increased. In particular, for as-built BIM, the point clouds with the high accuracy and density is required to describe the detail information of building components. Since the terrestrial LiDAR has high performance in terms of accuracy and point density, it has been widely used for as-built 3D modelling. However, the high cost of devices is obstacle for general uses, and the image-based 3D reconstruction technique is being a new attraction as an alternative solution. This paper compares the image-based 3D reconstruction technique and the terrestrial LiDAR in point of establishing the as-built BIM of outdoor structures. The point clouds generated from the image-based 3D reconstruction technique could roughly present the 3D shape of a building, but could not precisely express detail information, such as windows, doors and a roof of building. There were 13.2~28.9 cm of RMSE between the terrestrial LiDAR scanning data and the point clouds, which generated from smartphone and DSLR camera images. In conclusion, the results demonstrate that the image-based 3D reconstruction can be used in drawing building footprint and wireframe, and the terrestrial LiDAR is suitable for detail 3D outdoor modeling.

Vibration analysis and FE model updating of lightweight steel floors in full-scale prefabricated building

  • Petrovic-Kotur, Smiljana P.;Pavic, Aleksandar P.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.277-300
    • /
    • 2016
  • Cold-formed steel (CFS) sections are becoming an increasingly popular solution for constructing floors in residential, healthcare and education buildings. Their reduced weight, however, makes them prone to excessive vibrations, increasing the need for accurate prediction of CFS floor modal properties. By combining experimental modal analysis of a full-scale CFS framed building and its floors and their numerical finite element (FE) modelling this paper demonstrates that the existing methods (based on the best engineering judgement) for predicting CFS floor modal properties are unreliable. They can yield over 40% difference between the predicted and measured natural frequencies for important modes of vibration. This is because the methods were adopted from other floor types (e.g., timber or standard steel-concrete composite floors) and do not take into account specific features of CFS floors. Using the adjusted and then updated FE model, featuring semi-rigid connections led to markedly improved results. The first four measured and calculated CFS floor natural frequencies matched exactly and all relevant modal assurance criterion (MAC) values were above 90%. The introduction of flexible supports and more realistic modelling of the floor boundary conditions, as well as non-structural $fa{\c{c}}ade$ walls, proved to be crucial in the development of the new more successful modelling strategy. The process used to develop 10 identified and experimentally verified FE modelling parameters is based on published information and parameter adjustment resulting from FE model updating. This can be utilised for future design of similar lightweight steel floors in prefabricated buildings when checking their vibration serviceability, likely to be their governing design criterion.

Virtual Design and Construction (VDC)-Aided System for Logistics Monitoring: Supply Chains in Liquefied Natural Gas (LNG) Plant Construction

  • Moon, Sungkon;Chi, Hung-Lin;Forlani, John;Wang, Xiangyu
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.195-199
    • /
    • 2015
  • Many conventional management methods have emphasized the minimization of required resources along the supply chain. Accordingly, this paper presents a proposed method called the Virtual Design and Construction (VDC)-aided system. It is based on object-oriented resource control, in order to accomplish a feed-forward control monitoring supply chain logistics. The system is supported by two main parts: (1) IT-based Technologies; and (2) VDC Models. They enable the system to convey proactive information from the detection technology to its linked visualization. The paper includes a field study as the system's pre-test: the Scaffolding Works in a LNG Mega Project. The study demonstrates a system of real-time productivity monitoring by use of the RFIDbased Mobile Information Hub. The on-line 'productivity dashboard' provides an opportunity to display the continuing processes for each work-package. This research project offers the observed opportunities created by the developed system. Future work will entail research experiments aimed towards system validation.

  • PDF

Numerical and experimental verifications on damping identification with model updating and vibration monitoring data

  • Li, Jun;Hao, Hong;Fan, Gao;Ni, Pinghe;Wang, Xiangyu;Wu, Changzhi;Lee, Jae-Myung;Jung, Kwang-Hyo
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.127-137
    • /
    • 2017
  • Identification of damping characteristics is of significant importance for dynamic response analysis and condition assessment of structural systems. Damping is associated with the behavior of the energy dissipation mechanism. Identification of damping ratios based on the sensitivity of dynamic responses and the model updating technique is investigated with numerical and experimental investigations. The effectiveness and performance of using the sensitivity-based model updating method and vibration monitoring data for damping ratios identification are investigated. Numerical studies on a three-dimensional truss bridge model are conducted to verify the effectiveness of the proposed approach. Measurement noise effect and the initial finite element modelling errors are considered. The results demonstrate that the damping ratio identification with the proposed approach is not sensitive to the noise effect but could be affected significantly by the modelling errors. Experimental studies on a steel planar frame structure are conducted. The robustness and performance of the proposed damping identification approach are investigated with real measured vibration data. The results demonstrate that the proposed approach has a decent and reliable performance to identify the damping ratios.

3D Printing in Modular Construction: Opportunities and Challenges

  • Li, Mingkai;Li, Dezhi;Zhang, Jiansong;Cheng, Jack C.P.;Gan, Vincent J.L.
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.75-84
    • /
    • 2020
  • Modular construction is a construction method whereby prefabricated volumetric units are produced in a factory and are installed on site to form a building block. The construction productivity can be substantially improved by the manufacturing and assembly of standardized modular units. 3D printing is a computer-controlled fabrication method first adopted in the manufacturing industry and was utilized for the automated construction of small-scale houses in recent years. Implementing 3D printing in the fabrication of modular units brings huge benefits to modular construction, including increased customization, lower material waste, and reduced labor work. Such implementation also benefits the large-scale and wider adoption of 3D printing in engineering practice. However, a critical issue for 3D printed modules is the loading capacity, particularly in response to horizontal forces like wind load, which requires a deeper understanding of the building structure behavior and the design of load-bearing modules. Therefore, this paper presents the state-of-the-art literature concerning recent achievement in 3D printing for buildings, followed by discussion on the opportunities and challenges for examining 3D printing in modular construction. Promising 3D printing techniques are critically reviewed and discussed with regard to their advantages and limitations in construction. The appropriate structural form needs to be determined at the design stage, taking into consideration the overall building structural behavior, site environmental conditions (e.g., wind), and load-carrying capacity of the 3D printed modules. Detailed finite element modelling of the entire modular buildings needs to be conducted to verify the structural performance, considering the code-stipulated lateral drift, strength criteria, and other design requirements. Moreover, integration of building information modelling (BIM) method is beneficial for generating the material and geometric details of the 3D printed modules, which can then be utilized for the fabrication.

  • PDF

Land Use Feature Extraction and Sprawl Development Prediction from Quickbird Satellite Imagery Using Dempster-Shafer and Land Transformation Model

  • Saharkhiz, Maryam Adel;Pradhan, Biswajeet;Rizeei, Hossein Mojaddadi;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • Accurate knowledge of land use/land cover (LULC) features and their relative changes over upon the time are essential for sustainable urban management. Urban sprawl growth has been always also a worldwide concern that needs to carefully monitor particularly in a developing country where unplanned building constriction has been expanding at a high rate. Recently, remotely sensed imageries with a very high spatial/spectral resolution and state of the art machine learning approaches sent the urban classification and growth monitoring to a higher level. In this research, we classified the Quickbird satellite imagery by object-based image analysis of Dempster-Shafer (OBIA-DS) for the years of 2002 and 2015 at Karbala-Iraq. The real LULC changes including, residential sprawl expansion, amongst these years, were identified via change detection procedure. In accordance with extracted features of LULC and detected trend of urban pattern, the future LULC dynamic was simulated by using land transformation model (LTM) in geospatial information system (GIS) platform. Both classification and prediction stages were successfully validated using ground control points (GCPs) through accuracy assessment metric of Kappa coefficient that indicated 0.87 and 0.91 for 2002 and 2015 classification as well as 0.79 for prediction part. Detail results revealed a substantial growth in building over fifteen years that mostly replaced by agriculture and orchard field. The prediction scenario of LULC sprawl development for 2030 revealed a substantial decline in green and agriculture land as well as an extensive increment in build-up area especially at the countryside of the city without following the residential pattern standard. The proposed method helps urban decision-makers to identify the detail temporal-spatial growth pattern of highly populated cities like Karbala. Additionally, the results of this study can be considered as a probable future map in order to design enough future social services and amenities for the local inhabitants.

The use and potential applications of point clouds in simulation of solar radiation for solar access in urban contexts

  • Alkadri, Miktha F.;Turrin, Michela;Sariyildiz, Sevil
    • Advances in Computational Design
    • /
    • v.3 no.4
    • /
    • pp.319-338
    • /
    • 2018
  • High-performing architecture should be designed by taking into account the mutual dependency between the new building and the local context. The performative architecture plays an important role to avert any unforeseen failures after the building has been built; particularly ones related to the microclimate impacts that affect the human comfort. The use of the concept of solar envelopes helps designers to construct the developable mass of the building design considering the solar access and the site obstruction. However, the current analysis method using solar envelopes lack in terms of integrating the detailed information of the existing context during the simulation process. In architectural design, often the current site modelling not only absent in preserving the complex geometry but also information on the surface characteristics. Currently, the emerging applications of point clouds offer a great possibility to overcome these limitations, since they include the attribute information such as XYZ as the position information and RGB as the color information. This study particularly presents a comparative analysis between the manually built 3D models and the models generated from the point cloud data. The modelling comparisons focus on the relevant factors of solar radiation and a set of simulation to calculate the performance indicators regarding selected portions of the models. The experimental results emphasize an introduction of the design approach and the dataset visibility of the 3D existing environments. This paper ultimately aims at improving the current architectural decision of support environment means, by increasing the correspondence between the digital models for performance analysis and the real environments (context of design) during the conceptual design phase.

Determinants for Students Perceived Potential of BIM Use

  • Linderoth, Henrik C.J.;Peansupap, Vachara;Wong, Johnny
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.291-300
    • /
    • 2020
  • Newly graduated students are shown to constitute an important source of innovation within the architectural, engineering and construction (AEC) industry. In relation to digital technologies like BIM (Building Information Modelling) that is claimed to have a potential to transform the industry, newly graduated students may play a vital role in innovating with BIM. The paper aims to explore determinants for students perceived potential of BIM use (PPBU) and the role of the educational background. The aim will be achieved by analysing the results from a survey conducted among third- and fourth-year students in construction and civil engineering in Hong Kong, Sweden, and Thailand (n = 194). When the different groups are compared Swedish and Thai students perceive a significant higher PPBU than Hong Kong students. In a step-wise multiple regression analysis five predictors for PPBU were identified for Thai respectively Swedish students, and one predictor was identified for Hong Kong students. It is concluded that in the contemporary BIM-discourse it is claimed that BIM can/should transform the industry, and BIM is even seen as a disruptive technology, and newly graduated students will contribute to (digitally driven) innovation. However, from the predictors of PPBU, the question can raised if the awareness of the need for structural changes is lacking in the education, if students later in their working life should contribute to a BIM-induced transformation of the industry?

  • PDF

A Case Study of BIM application to the Building Construction Project using Fast Track Method (Fast Track 건축공사의 BIM 적용 사례에 관한 연구)

  • Yoo, Pilsang;Han, Byeong-Min;Jeong, Mingu;Kim, Gwang-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.210-211
    • /
    • 2013
  • The purpose of this research is to perform a case study for verifying problems of BIM application to the building construction project using Fast Track method. The object of case study is an actual construction project completed in 2013. As a result, some problems and solutions for those were extracted. The result of this study will contribute revitalization to the BIM application in the project using Fast Track method.

  • PDF