• Title/Summary/Keyword: building energy performance simulation

Search Result 331, Processing Time 0.02 seconds

Performance Prediction on the Application of a Ground-Source Heat Pump(GSHP) System in an Office Building (업무용 건물의 지열 히트펌프 시스템에 대한 성능 예측)

  • Sohn, Byonghu;Kwon, Han Sol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.9
    • /
    • pp.409-415
    • /
    • 2014
  • Ground-source heat pump (GSHP) systems have become an efficient alternative to conventional cooling and heating methods due to their higher energy efficiency. These systems use the ground as a heat source and the heat sink for cooling mode operation. The purpose of this simulation study is to evaluate the performance of a hypothetical GSHP system in an office building and to assess the energy saving effect against the existing HVAC systems (boiler and turbo chiller). We collected monthly energy consumption data from an actual office building ($32,488m^2$) in Seoul, and created a model to calculate the hourly building loads with EnergyPlus. In addition, we used GLD (Ground Loop Design) V8.0, a GSHP system design and simulation software tool, to evaluate hourly and monthly performance of the GSHP system. The energy consumption for the GSHP system based on the hourly simulation results were estimated to be 582.6 MWh/year for cooling and 593.2 MWh/year for heating, while those for the existing HVAC systems were found to be 674.5 MWh/year and 2,496.4 MWh/year, respectively. The seasonal performance factor (SPF) of the GSHP system was also calculated to be in the range of 3.37~4.28.

The Effect of a Geothermal Heat Pump and Photovoltaics Application on the Building Energy Efficiency and ZEB Certification Rating for a Non-Residential Building (지열 열펌프 및 태양광 발전 적용이 비주거용 건물의 에너지효율등급과 ZEB 인증 등급에 미치는 영향)

  • Geon Ho Moon;Chang Yong Park
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Many government in the world have conducted building energy performance certification program to reduce building energy consumption. In this study, a reference building and its HVAC system was modeled, and the energy load and consumption were estimated by the ECO2 program. The software is a simple building energy simulation program based on monthly calculated method. The building energy efficiency rating the the reference building was 1+ under baseline condition. The simulation results showed that the insulation performance slightly affected building energy load and consumption, but light density had a significant effect on them. The application of geothermal heat pumps gave improvement of building energy efficiency rating but it could not make it possible to get zero energy building(ZEB) certification. The ZEB 5 certification could be achieved by using photovoltaics, however getting better grade was difficult. The simulation results showed that the ZEB 4 certification, one grade higher than ZEB 5, could be attained by using more than one renewable energy source such as geothermal and solar energy in this study.

Performance Evaluation of Electrochromic Window System by Different Orientations and Locations in Korea (Electrochromic 창호 적용시 지역별 건물 냉난방 에너지 소비량 절감성능)

  • Shin, Jae-Yoon;Chae, Young Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.75-84
    • /
    • 2018
  • The most crucial point of reducing building energy is application of high performance envelope. The amount of heat exchange through window is highest in comparison of other envelopes so that heat exchange through window influence directly with building energy consumption. The window energy performance can be define with thermal, leakage and optical performance. In previous study we can confirmed that not only thermal performance but also optical performance are considered, 11% to 15% of building energy consumption can be reduced. Smart window system has potential of energy saving so that many industry field use smart window system including architectural area and these aspect causes smart window market continuous growth year by year. In this study, building energy consumption has been analyzed which consist of smart window that dynamically control optical states. The consideration of standard commercial building model for research, the reference medium size commercial building model of DOE (Department Of Energy, USA) has been used. The building energy simulation result of 4 axis in 8 regions in Korea shows 8% to 22% reduction of building energy consumption by application of smart window system.

The study of in-situ measurement method for wall thermal performance diagnosis of existing apartment (기존 공동 주택의 벽체 열성능 현장 측정법에 관한 연구)

  • Kim, Seohoon;Kim, Jonghun;Yoo, Seunghwan;Jeong, Hakgeun;Song, Kyoodong
    • KIEAE Journal
    • /
    • v.16 no.4
    • /
    • pp.71-77
    • /
    • 2016
  • Purpose : The energy saving in a residential building (apartment) sector is known as one of the effective solution of energy reduction. In South Korea, the government has recently reinforced regulations associated with the energy performance of buildings. However, there is a lack of research on the methods for the energy performance diagnosis that is used to analyze the wall thermal performance of the existing apartments. Because a reliable diagnosis is necessary to save the building energy, this study analyzed wall thermal performance of an existing apartment in Seoul. Method : This paper applied two methods for analysis of the thermal insulation performance; HFM(Heat Flow Meter) method and ASTR(Air-Surface Temperature Ratio) method. The HFM method is suggested by ISO9869-1 code to measure the thermal performance. The ASTR method is proposed by this study for the simplified In-situ measurement and it uses three temperature data (interior wall surface, interior and exterior air) and the overall heat transfer coefficient. This study conducted the experiment of an existing apartment in Seoul using these methods and analyzed the results. Furthermore, the energy simulation tool of the building was used to suggest retrofit of the building based on the results of measurements. Result : The error rate of HFM method and ASTR method was analyzed in about 17 to 20%. As the results of comparison between the initial design values of the wall and the measured values, the 26% degradation of insulation thermal performance was measured. Lastly, the energy simulation tool of the building shows 10.8% energy savings in accordance with the construction of suggested retrofit.

Analysis of Energy Performance and PMV Improvement by Application of Passive Factor for Office Building Renewal (오피스건물 리뉴얼시 패시브 요소적용에 따른 에너지성능 및 PMV 개선에 관한 연구)

  • Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.55-64
    • /
    • 2014
  • This paper presents a case study to investigate the monthly calculation method of ISO 13790 applied for a office building. The energy performance analysis according to improvement of insulation and air permeability of windows in K office buildings is investigated by means of building energy efficiency rating tool ($ECO_2-OD$). The K building energy system is tested experimently by the measurement of PMV(predicted mean vote) for the control of indoor thermal environment and heat transmission coefficient of windows and interior walls respectively, before and after the example K office building is remodeled passively. Therefore, Internet based energy assessment program of energy efficiency rating of office building can be applied as a program for the annual energy requirement and for evaluation of energy savings from the experimental and simulation results.

A Simulation Appraisal of Energy Performance in Office Building by Different Types of Air-Conditioning (공조방식에 따른 사무소 건물의 에너지 성능 평가)

  • Choi, Jong-Dae;Choi, Dong-Suk;Yun, Geun-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.8
    • /
    • pp.612-620
    • /
    • 2012
  • High economic growth causes increase of the building energy consumption. The energy consumption for HVAC system accounts for 40~50% of the whole building consumption. The trend for building is large-scale and high-rise. Because of the trend, the energy consumption is becoming bigger than before. Nowadays, HVAC system design are recognized as the solution for a energy-saving. This paper is focused on the energy performance evaluation of central air-conditioning system(water-based) and system air-conditioning that were applied to the office building. The systems are modeled and simulated by using EnergyPlus Software 6.0. After the Simulation, annual cooling and heating energy consumption were calculated. It was found that the system air-conditioning can reduce the energy consumption approximately 55.24% annually compared with the central air-conditioning system(water-cooled). In addition, about 46.13% of annual operating costs can be reduced by use of system air-conditioning.

Performance Assessment of Building Envelopes I: Double Skin Facade (외피 친환경 성능평가 I: 이중외피)

  • Kim, Deuk-Woo;Park, Cheol-Soo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.77-82
    • /
    • 2009
  • Many countries have been interested in sustainable development of buildings for environmental preservation. Thus it is significant to assess building envelopes in terms of $CO_2$ emissions owing to Kyoto Protocol. In this paper, a Double Skin Facade(DSF) installed in a general office building was assessed by $CO_2$ emissions(one of the performance-based assessment). To predict $CO_2$ emissions caused by the building energy consumption, the dynamic simulation program(Energy Plus) and $CO_2$ emission factor was used. Because DSF has various airflow regimes, pre-simulation runs were conducted to decide proximate optimal airflow regimes depending on seasonal variation. It is shown that the DSF can achieve 17.1-36.5% of annual energy savings.

  • PDF

Analysis of the Thermal Environment and Natural Ventilation for the Energy Performance Evaluation of the Double Skin System during the Summer (이중외피 시스템의 에너지성능평가를 위한 하절기 열환경 및 자연환기 분석)

  • Eom, Jung-Won;Cho, Soo;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.68-76
    • /
    • 2002
  • This paper discusses thermal and ventilation performance which might be caused by the adoption of one of specific building facade techniques, Double Skin System(DSS). One building with a prototypical DSS was selected and systematically investigated through field monitoring and computer simulation techniques. A network model of ventilation was successfully made using COMIS to evaluate ventilation performance of the system which can hardly be done by field measurements. Various operating conditions of air conditioning on/off and window opening were implemented in this type of building. Through the appropriate operation of the DSS in summer, simulation-based and experimental results implicate that it can lead to cooling energy savings.

Analysis of Building Energy using Automated Weather System Data (자동 기상관측 자료를 이용한 건축물 에너지 분석)

  • Lee, Kwi-Ok;Kang, Dong-Bae;Lee, Kang-Yoel;Jung, Woo-Sik;Sim, Je-Hean;Yoon, Seong-Hwan
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.493-502
    • /
    • 2014
  • EnergyPlus is a whole building energy simulation program that engineers, architects, and researchers use to model energy and water use in buildings. Modeling the performance of a building with EnergyPlus enables building professionals to optimize the building design to use less energy and water. This program provides energy analysis of building and needs weather data for simulation. Weather data is available for over 2,000 locations in a file format that can be read by EnergyPlus. However, only five locations are avaliable in Korea. This study intends to use AWS data for having high spatial resolution to simulate building energy. The result of this study shows the possibility of using AWS data for energy simulation of building.

Energy Performance Evaluation of A Primary School Building for Zero Energy School (제로에너지 스쿨을 위한 초등 교육시설의 에너지 성능평가)

  • Yoon, Jong-Ho;Shin, U-Cheul;Cho, Jin-Il;Park, Jae-Wan;Kim, Hyo-Jung;Lee, Chul-Sung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.121-126
    • /
    • 2009
  • This study analyzed the standard school's energy usage and patterns as the zero-energy goal of primary school building, and proposed the energy reduction process of school building using energy analysis computing simulation tool. As a analysis simulation tool, Visual DOE 4.0 is used. For analysis of actual energy usage, selected primary school that is standard in the nation's energy consumption. Standard of the school's energy consumption analysis were devided into electric and gas energy. Input parameters of the simulation program based on the literature material and field survey material. after, but it was calibrated to comparison with the standard school's energy consumption. Finally, its energy usage analyzed by component and made the priority order of energy saving. Applied energy saving technologies are envelopment insulation, high efficiency lighting, high performance HAVC system and used active equipment system of solar collector and photovoltaic generation for additional savings.

  • PDF