• Title/Summary/Keyword: building energy

Search Result 3,867, Processing Time 0.03 seconds

A Study of the evaluation of Building Energy Rating depending on region according to the Insulation Performance of the Super window (슈퍼윈도우 열성능에 따른 지역별 건물에너지 효율등급에 관한 연구)

  • Jang, Cheol-Yong;Ahn, Byung-Lip;Kim, Chi-Hoon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.211-215
    • /
    • 2009
  • As entering in the time of high oil price, seriousness of an energy is on the rise and the importance of energy is growing. Especially, building energy occupying 24% of total demand of energy is expected to be possible to reduce energy demand more than other section. To reduce the building energy consumption, this study analyzes function and thermal performance of Super window by heat experimental apparatus. Super window is a 2-track low-e glazing window for high insulation efficiency. By applying the results of this experiment to building energy efficiency rating tool, this study compares energy efficiency rates depending on a region.-Jeju, South, Central. And it shows how much does Super window reduce Building energy consumption.

  • PDF

Trends and Future Prospects of AI Technologies for Building Energy Management (건물 에너지 관리를 위한 인공지능 기술 동향과 미래 전망)

  • J. Jeong;W.K. Park
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.4
    • /
    • pp.32-41
    • /
    • 2024
  • Building energy management plays a crucial role in improving energy efficiency and optimizing energy usage. To achieve this, it is important to monitor and analyze energy-related data from buildings in real time using sensors to understand energy consumption patterns and establish optimal operational strategies. Because of the uncertainties in building energy-related data, there are challenges in analyzing these data and formulating operational strategies based on them. Artificial intelligence (AI) technology can help overcome these challenges. This paper investigates past and current research trends in AI technology and examines its future prospects for building energy management. By performing prediction and analysis based on energy consumption or supply data, the future energy demands of buildings can be forecasted and energy consumption can be optimized. Additionally, data related to the surrounding environment, occupancy, and other building energy-related factors can be collected and analyzed using sensors to establish operational strategies aimed at further reducing energy consumption and increasing efficiency. These technologies will contribute to cost savings and help minimize environmental impacts for building owners and operators, ultimately facilitating sustainable building operations.

A Study of Zero Energy Building Verification with Measuring and Model-based Simulation in Exhibition Building

  • Ha, Ju-wan;Park, Kyung-soon;Kim, Hwan-yong;Song, Young-hak
    • Architectural research
    • /
    • v.20 no.3
    • /
    • pp.93-102
    • /
    • 2018
  • With the change in Earth's ecosystems due to climate change, a number of studies on zero energy buildings have been conducted globally, due to the depletion of energy and resources. However, most studies have concentrated on residential and office buildings and the performance predictions were made only in the design phase. This study verifies the zero-energy performance in the operational phase by acquiring and analyzing data after the completion of an exhibition building. This building was a retention building, in which a renewable energy system using a passive house building envelope, solar photovoltaic power generation panels, as well as fuel cells were adopted to minimize the maintenance cost for future energy-zero operations. In addition, the energy performance of the building was predicted through prior simulations, and this was compared with actual measured values to evaluate the energy performance of the actual operational records quantitatively. The energy independence rate during the measurement period of the target building was 123% and the carbon reduction due to the energy production on the site was 408.07 tons. The carbon reduction exceeded the carbon emission (331.5 tons), which verified the carbon zero and zero-energy performances.

The Energy Saving Effect and Economic Assessment of Office Building according to the Building Envelope Remodeling (사무소 건물의 외피 리모델링에 따른 에너지절감효과 및 경제성 분석)

  • Choi, Seon woo;Kim, Ji Yeon;Park, Hyo soon;Kim, Jun Tae
    • KIEAE Journal
    • /
    • v.12 no.6
    • /
    • pp.85-92
    • /
    • 2012
  • The Korean government has introduced building regulations with improved energy conservation measures, including higher insulation levels for building envelope. However, there are many existing buildings that tend to consume more energy for heating and cooling than new buildings, as they were built under the former regulations with relatively higher U-values of walls and glazing. In order to improve energy efficiency in existing buildings, green remodelling of building envelope and building services are required. For existing buildings, building services improvements have been achieved through energy service company(ESCO), but much attention has not been paid to building envelope improvements with various reasons, such as uncertainty of energy saving effect design issues and costs. The aim of this study is to evaluate the impact of building envelope improvements in a typical commercial building on its heating and cooling energy loads. The results show that the improvement of glazing with lower U-values has the highest energy saving effects, followed by wall, roof and floor, under the condition of same level of insulation improvements. However, high insulated glazing increased LCC because of higher initial investment costs.

A Study on the Optimum Design of a Facade with Shading-type BIPV in Office Building (차양형 BIPV가 적용된 사무소 건물의 외피 최적 설계에 관한 연구)

  • Park, Se-Hyeon;Kang, Jun-Gu;Bang, Ah-Young;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.93-101
    • /
    • 2015
  • Zero energy building is a self sufficient building that minimizes energy consumption through passive elements such as insulation, high performance window system and installing of high efficiency HVAC system and uses renewable energy sources. The Korea Government has been strengthening the building energy efficiency standard and code for zero energy building. The building energy performance is determined by the performance of building envelope. Therefore it is important to optimize facade design such as insulation, window properties and shading, that affect the heating and cooling loads. In particular, shading devices are necessary to reduce the cooling load in summer season. Meanwhile, BIPV shading system functions as a renewable energy technology applied in solar control facade system to reduce cooling load and produce electricity simultaneously. Therefore, when installing the BIPV shading system, the length of shadings and angle that affect the electricity production must be considered. This study focused on the facade design applied with BIPV shading system for maximizing energy saving of the selected standard building. The impact of changing insulation on roof and walls, window properties and length of BIPV shading device on energy performance of the building were investigated. In conclusion, energy consumption and electricity production were analyzed based on building energy simulations using energyplus 8.1 building simulation program and jEPlus+EA optimization tool.

Energy efficiency retrofit package plan for existing buildings (기존 건축물의 에너지 효율화 리트로핏 패키지 방안)

  • Kim, Su Min;Cho, Hyun Mi
    • Land and Housing Review
    • /
    • v.11 no.1
    • /
    • pp.95-101
    • /
    • 2020
  • In the past few decades, the global population growth and rapid economic development have resulted in significant increases in building energy consumption. To reduce greenhouse-gas emissions and building energy consumption, building materials and energy technologies must be optimized. Building retrofitting is a more efficient method than reconstruction to improve the building energy performance. In order to improve the energy performance of existing buildings, this study proposed energy-efficiency retrofit plans and derived cost-effective retrofit plan. The energy efficient retrofit method is achieved through the packaging of energy technology and the energy and cost reduction effect of the energy efficiency retrofit package are analyzed. As a result of the study, the energy-efficiency retrofit package showed an energy reduction effect of up to 60% or more and a construction cost reduction of about 30%. This study argues that optimal energy and construction cost reduction of existing buildings are possible through the packaging of energy efficiency technology.

Existing Building Energy Simulation Method Using Calibrated Model by Energy Audit Data (성능진단 데이터로 보정된 모델을 이용한 기존건축물의 에너지시뮬레이션 기법)

  • Kong, Dong-Seok;Kim, Du-Hwan;Chang, Yong-Sung;Huh, Jung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.5
    • /
    • pp.231-239
    • /
    • 2014
  • This paper represents a method of existing building energy simulation using energy audit data. Energy audit must be carried out for reasonable analysis, because characteristics of existing buildings such as efficiency of fan, pump, flow rate, pressure, COP and operating schedule could be changed during the building operation. These building characteristics should be measured to estimate actual energy consumption of the existing building. In this study, we conducted energy audit and calculated energy savings for a 7-stories building as a case-study. The energy audit data were used to calibrate the building model of EnergyPlus simulation. Baseline model validated according to M&V guideline index. As a result, building characteristics are significant parameters making a big impact on energy savings in existing buildings.

Performance Evaluation of Electrochromic Window System by Different Orientations and Locations in Korea (Electrochromic 창호 적용시 지역별 건물 냉난방 에너지 소비량 절감성능)

  • Shin, Jae-Yoon;Chae, Young Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.75-84
    • /
    • 2018
  • The most crucial point of reducing building energy is application of high performance envelope. The amount of heat exchange through window is highest in comparison of other envelopes so that heat exchange through window influence directly with building energy consumption. The window energy performance can be define with thermal, leakage and optical performance. In previous study we can confirmed that not only thermal performance but also optical performance are considered, 11% to 15% of building energy consumption can be reduced. Smart window system has potential of energy saving so that many industry field use smart window system including architectural area and these aspect causes smart window market continuous growth year by year. In this study, building energy consumption has been analyzed which consist of smart window that dynamically control optical states. The consideration of standard commercial building model for research, the reference medium size commercial building model of DOE (Department Of Energy, USA) has been used. The building energy simulation result of 4 axis in 8 regions in Korea shows 8% to 22% reduction of building energy consumption by application of smart window system.

Analysis of the Building Energy Efficiency Rating Certified for Public Office Buildings (공공기관 업무용 건물의 건축물에너지효율등급 인증 현황 분석)

  • Lee, Han-Sol;Kim, Seo-Hun;Kim, Jonghun;Kim, Jun-Tae;Jang, Cheol-Yong
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.75-82
    • /
    • 2015
  • Purpose: The first grade of Korea's Building Energy Efficiency Rating System(BEERS) is required for new government office buildings as a mandatory measure to reduce greenhouse gas emission. However, there is no specific criteria about performance that which level should apply to energy-saving design element for obtaining Building Energy Efficiency Rating 1st grade. Therefore, Certification status should be analyzed firstly, about the office building which is certificated. Certification analysis for office buildings acquired certification therefore should be done first. Method: In this study, Certification status(Office buildings acquired Building Energy Efficiency Rating Certification)was analyzed by classified year, region, specific scale etc. And we analyzed statistically by eliciting an average value of each element influencing to the amount of energy. Result: Energy demands were gradually decreased due to revision of thermal insulation standards for enhanced u-value. Energy consumptions were different from the kind of equipment and yearly trends applied depending on the size of the building. Total primary energy consumptions were influenced by heat source types and the primary energy scale factors.

Analysis of Energy Performance and PMV Improvement by Application of Passive Factor for Office Building Renewal (오피스건물 리뉴얼시 패시브 요소적용에 따른 에너지성능 및 PMV 개선에 관한 연구)

  • Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.55-64
    • /
    • 2014
  • This paper presents a case study to investigate the monthly calculation method of ISO 13790 applied for a office building. The energy performance analysis according to improvement of insulation and air permeability of windows in K office buildings is investigated by means of building energy efficiency rating tool ($ECO_2-OD$). The K building energy system is tested experimently by the measurement of PMV(predicted mean vote) for the control of indoor thermal environment and heat transmission coefficient of windows and interior walls respectively, before and after the example K office building is remodeled passively. Therefore, Internet based energy assessment program of energy efficiency rating of office building can be applied as a program for the annual energy requirement and for evaluation of energy savings from the experimental and simulation results.