• Title/Summary/Keyword: building dynamic characteristics

Search Result 372, Processing Time 0.028 seconds

Seismic Performance Assessment of Unreinforced Masonry Wall Buildings Using Incremental Dynamic Analysis (증분동적해석을 통한 비보강 조적벽식 건물의 내진성능 평가)

  • Kwon, Ki Hyuk;Kim, Man Hoe;Kim, Hyung Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.28-39
    • /
    • 2013
  • The most common housing type in Korea is low-rise buildings with unreinforced masonry walls (UMWs) that have been known as a vulnerable seismic-force-resisting system (SFRS) due to the lack of ductility capacities compared to high lateral stiffness of an UMW. However, there are still a little experimental investigation on the shear strength and stiffness of UMWs and on the seismic performance of buildings using UMWs as a SFRS. In Korea, the shear strength and stiffness of UMWs have been evaluated with the equations suggested in FEMA 356 which can not reflect the structural and material characteristics, and workmanship of domestic UMW construction. First of all, this study demonstrates the differences in shear strength and stiffness of UMWs obtained from between FEMA 356 and test results. The influence of these differences on the seismic performance of UMW buildings is then discussed with incremental dynamic analyses results of a prototype UMW building that were selected by the site survey of more than 200 UMW buildings and existing test results of UMWs. The seismic performance assessment of the prototype UMW building are analyzed based on collapse margin ratios and beta values repesenting uncertainty of seismic capacity. Analysis results show that the seismic performance of the UMW building estimated using the equations in FEMA 356 underestimates both a collapse margin ratio and a beta value compared to that estimated by test results. Whatever the estimation is carried out two cases, the seismic performance of the prototype building does not meet the criteria prescribed in a current Korean seismic code and about 90% collapse probability presents for more than 30-year-old UMW buildings under earthquakes with 2400 return years.

Modeling and Control of a Two-Stage DC-DC-AC Converter for Battery Energy Storage System (배터리 에너지 저장 장치를 위한 2단 DC-DC-AC 컨버터의 모델링 방법)

  • Hyun, Dong-Yub;Jung, Seok-Eon;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.422-430
    • /
    • 2014
  • This study proposes a small-signal model and control design for a two-stage DC-DC-AC converter to investigate its dynamic characteristics in relation to battery energy storage system. When the circuit analysis of the two-stage DC-DC-AC converter is attempted simultaneously, the mathematical procedure of deriving the dynamic equation is complex and difficult. The main idea of modeling the two-stage DC-DC-AC converter states that this topology is separated into a bidirectional DC-DC converter and a single-phase inverter with an equivalent current source corresponding to that of the inverter or converter. The dynamic equations for the separated converter and inverter are then derived using the state-space averaging technique. The procedures of building the small-signal model of the two-stage DC-DC-AC converter are described in detail. Based on the derived small-signal model, the individual controllers are designed through a frequency-domain analysis. The simulation and experimental results verify the validity of the proposed modeling approach and controller design.

Robust Control of Flexible Structure Using Dynamic Vibration Absorber (동흡진기를 이용한 유연 구조물의 강건제어)

  • Sim Sangdeok;Kang Hoshik;Jong Namheui;Jang Kangseok;Kim Doohoon;Song Ohseop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1093-1101
    • /
    • 2005
  • Hybrid mass damper systems have recently been introduced as a dynamic vibration absorber to exploit the benefits of both the conventional tuned mass damper system and the active control system. A hybrid system is programmed to function as either a conventional TMD or as an active system according to the wind conditions and the resultant building and damper mass vibration characteristics. This paper deals with the design of the robust controller for the control of the flexible box structure. The control algorithm was devised based on $H_2$(LQG) robust control logic with acceleration feedback and to improve the capability of the controller Kalman Filter was accepted for the system. To test the ability of the robust controller using the linear motor damper system, performance tests and simulations were carried out on the full-scale steel frame structure. Through the performance tests, it was confirmed that acceleration levels are reduced down.

Design optimization of intelligent service robot suspension system using dynamic model (동역학 모델을 활용한 서비스용 지능형 로봇의 현가시스템 설계 최적화)

  • Choi, Seong-Hoon;Park, Tae-Won;Lee, Soo-Ho;Jung, Sung-Pil
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.565-570
    • /
    • 2008
  • Recently, the intelligent service robot is applied for the purpose of guiding the building or providing information to the visitors of the public institution. The intelligent robot which is on development has a sensor to recognize its location at the bottom of it. Four wheels which are arranged in the form of a lozenge support the weight of the components and structures of the robot. The operating environment of this robot is restricted at the uneven place because the driving part and internal structure is designed in one united body. The impact from the ground is transferred to the internal equipments and structures of the robot. This continuous impact can cause the unusual state of the precise components and weaken the connection between each structural part. In this paper, a suspension system which can be applied to the intelligent robot is designed. The dynamic model of the robot is created, and the driving characteristics of the actual robot and the robot with suspension are compared. The road condition which the robot can operate is expanded by the application of the suspension system. Additionally, the suspension system is optimized to reduce the impact to the robot components.

  • PDF

Evaluations of the Acoustics Characteristics of Cellulose Absorbers (셀롤로오즈 흡음재의 음향적 특성 평가)

  • Yeon, Joon-oh;Kim, Kyoung-woo;Yang, Kwan-seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.760-765
    • /
    • 2013
  • Eco-friendly material applied to building would be one of the materials which is must developed for global environmental conservation and reduction of carbon dioxide. For development of eco-friendly material, a cellulose sound-absorbing material has been developed with waste paper through adjustment of various mix proportions. The developed cellulose sound-absorbing material has been tested for its acoustic properties such as acoustic absorptivity and dynamic elastic modulus. The absorptivity was evaluated by developing six samples and using impedance tube and reverberation chamber. As a result of the evaluation, 0.64(NRC) was secured in absorptivity and $4.7MN/m^3$ was indicated in dynamic elastic modulus. Also, for practical use of developed sound-absorbing material as inner heartwood in drywall, comparison test of sound reduction index was performed with existing glass wool sound-absorbing material and constructed drywall of gybsum board. The results have shown 55dB(Rw) of sound reduction index in glass-wool wall and 46dB(Rw) in cellulose.

  • PDF

Evaluations of the Acoustics Characteristics of Cellulose Absorbers (셀룰로오즈 흡음재의 음향적 특성 평가)

  • Yeon, Joon-Oh;Kim, Kyoung-Woo;Yang, Kwan-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.456-462
    • /
    • 2013
  • Eco-friendly material applied to building would be one of the materials which is must developed for global environmental conservation and reduction of carbon dioxide. For development of eco-friendly material, a cellulose absorber has been developed with waste paper through adjustment of various mix proportions. The developed cellulose absorber has been tested for its acoustic properties such as absorption coefficient and dynamic stiffness. The absorption coefficient was evaluated by developing six samples and using impedance tube and reverberation chamber. As a result of the evaluation, 0.64(NRC) was secured in absorption coefficient and 4.7 $MN/m^3$ was indicated in dynamic stiffness. Also, for practical use of developed absorbers as inner heartwood in drywall, comparison test of sound reduction index was performed with existing glass wool absorbers and constructed drywall of gypsum board. The results have shown 55 dB(Rw) of sound reduction index in glass-wool wall and 46 dB(Rw) in cellulose.

Assessment of Distributed and Dynamic Potential of Photovoltaic Systems in Urban Areas (태양광 발전 시스템의 시공간적 잠재성 평가 소프트웨어 개발)

  • Choi, Yosoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.59.2-59.2
    • /
    • 2011
  • This study presents a new method for coupling ArcGIS (popular GIS software) with TRaNsient SYstems Simulation (TRNSYS, reference software for researchers and engineers around the world) to use capabilities of the 4 and 5-parameter PV array performance models within the ArcGIS environment. Using the validated and industry-proven solar energy simulation models implemented in TRNSYS and other built-in ArcGIS functionalities, dynamic characteristics of distributed PV potential in terms of hourly, daily or monthly power outputs can be investigated with considerations of diverse options in selecting and mounting PV panels. In addition, the proposed method allows users to complete entire procedures in a single framework (i.e., a preliminary site survey using 3D building models, shading analyses to investigate usable rooftop areas with considerations of different sizes and shapes of buildings, dynamic energy simulation to examine the performances of various PV systems, visualization of the simulation results to understand spatially and temporally distributed patterns of PV potential). Therefore tedious tasks for data conversion among multiple softwares can be significantly reduced or eliminated. While the programming environment of TRNSYS is proprietary, the redistributable executable, simulation kernel and simulation engine of TRNSYS can be freely distributed to end-users. Therefore, GIS users who do not have a license of TRNSYS can also use the functionalities of solar energy simulation models within ArcGIS.

  • PDF

Dynamic behaviors of viscous damper on concrete archaized building with lintel-column joint

  • Xue, Jianyang;Dong, Jinshuang;Sui, Yan
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.409-419
    • /
    • 2017
  • In order to analyze the vibration control effect of viscous damper in the concrete archaized buildings with lintel-column joints under seismic action, 3 specimens were tested under dynamic excitation. Two specimens with viscous damper were defined as the controlled component and one specimen without viscous damper was specified as the non-controlled component. The loading process and failure patterns were obtained from the test results. The failure characteristics, skeleton curves and mechanical behavior such as the load-displacement hysteretic loops, load carrying capacity, degradation of strength and rigidity, ductility and energy dissipation of the joints were analyzed. The results indicate that the load-bearing capacity of the controlled component is significantly higher than that of the non-controlled component. The former component has an average increase of 27.4% in yield load and 22.4% in ultimate load, respectively. Meanwhile, the performance of displacement ductility and the ability of energy dissipation for the controlled component are superior to those of the non-controlled component as well. Compared with non-controlled component, equivalent viscous damping coefficients are improved by 27.3%-30.8%, the average increase is 29.0% at ultimate load for controlled component. All these results reflect that the seismic performance of the controlled component is significantly better than that of the non-controlled component. These researches are helpful for practical application of viscous damper in the concrete archaizing buildings with lintel-column joints.

Evaluation of Seismic Performance of Mixed Building Structures by using the Nonlinear Displacement Mode Method (비선형 변위모드법을 적용한 복합구조물의 내진성능평가)

  • 김부식;송호산
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.71-80
    • /
    • 2003
  • Though a nonlinear time history analysis may be provided to estimate more exactly the seismic performance of building structure, approximation methods are still needed in the aspect of practicality and simplicity, In converting a multi-story structure to an equivalent SDOF system, the mode vectors of the multi-story structure are assumed as the mode shape in elastic state regardless of elastic or elastic-plastic state. However, the characteristics of displacement mode are also changed after the yielding made in the structural elements, because the structure becomes inelastic in each incremental load step. In this research, a method of converting MDOF system to ESDOF system is presented by using nonlinear displacement mode considering the mode change of structures after the yielding. Also, the accuracy and efficiency of the method of the nonlinear displacement mode method of the estimate of seismic response of Mixed Building Structures were examined by comparing the displacements of the roof level of the multi-story building structures estimated from this converted displacement response of ESDOF with the displacement of the roof level through the nonlinear dynamic analysis of the multi-story building structures subjected to an actual earthquake excitation.

Seismic performance of concrete moment resisting frame buildings in Canada

  • Kafrawy, Omar El;Bagchi, Ashutosh;Humar, Jag
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.233-251
    • /
    • 2011
  • The seismic provisions of the current edition (2005) of the National Building Code of Canada (NBCC) differ significantly from the earlier edition. The current seismic provisions are based on the uniform hazard spectra corresponding to 2% probability of exceedance in 50 years, as opposed to the seismic hazard level with 10% probablity of exeedance in 50 years used in the earlier edition. Moreover, the current code is presented in an objective-based format where the design is performed based on an acceptable solution. In the light of these changes, an assessment of the expected performance of the buildings designed according to the requirements of the current edition of NBCC would be very useful. In this paper, the seismic performance of a set of six, twelve, and eighteen story buildings of regular geometry and with concrete moment resisting frames, designed for Vancouver western Canada, has been evaluated. Although the effects of non-structural elements are not considered in the design, the non-structural elements connected to the lateral load resisting systems affect the seismic performance of a building. To simulate the non-structural elements, infill panels are included in some frame models. Spectrum compatible artificial ground motion records and scaled actual accelerograms have been used for evaluating the dynamic response. The performance has been evaluated for each building under various levels of seismic hazard with different probabilities of exceedance. From the study it has been observed that, although all the buildings achieved the life-safety performance as assumed in the design provisions of the building code, their performance characteristics are found to be non-uniform.