• 제목/요약/키워드: building dynamic characteristics

검색결과 372건 처리시간 0.025초

중장비의 동적시뮬레이션과 유한요소법을 이용한 피로수명에측 (Prediction of Fatigue Life Using Dynamic Simulation and Finite Element Anlaysis for Construction Equipment)

  • 권순기;박형진
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1392-1400
    • /
    • 1996
  • The need of companies shorten the design-to-manufacturing process for new products with improved quality in cost effective manner places increasing demends on engineers to simulate the performance characteristics of a design before it is built of a prototype is developed. For theses demands CAE(Computer-Aided Engineering) offers engineers not only giving confidence of their design but also eliminating potential errors due totesting prototypes in small numbers. This paper present the method to predict the fatigue life using dynamics simulation and FEA(Finite Element Analysis) for construciton equipment in the computer before building prototype. The dynamicsimulatio is to get the load-time history corresponding to the maneuvering and driving of the construction equipment. The FEA is to build a model of the structure and then analyse to define the local stress response to applied loadings using linear static analysis.

Fuzzy 알고리즘을 이용한 엘리베이터 안전진단 및 동특성 분석 포터블 장비 개발 (A study on the Development of the Portable Device for Safety Diagnosis and Dynamic Characteristics Analysis of Elevator using Fuzzy Algorithm)

  • 김태형;김훈모
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.199-202
    • /
    • 2001
  • An elevator system, which is essential equipment for vertical movement of an object, as a property of building, has been driven by various expenditures and purposes. Since developing electrical control technology, control system are highly developed. The elevator system has expanded widely, but a data accuracy acquisition technique and safety predict technique for securing system safety is still at a basic level. So, objective verification for elevator confidence condition requires an absolute accuracy measurement technique. Therefore, this study is executed in order to acquire a method of depending on sense of a manager with simple numeric measurement data, and to construct a logical, analytical foresight system for more efficient elevator management system. As an artificial intelligence for diagnosis, the fuzzy inference algorithm is used for foreseeing the system in this thesis, because the fuzzy algorithm is the most useful method for resolving subjective ideas and a vague judgment of humans. The fuzzy inference algorithm is developed for each sensor signal(i.e. vibration, velocity, current).

  • PDF

Comparison of dynamic behavior of shallow foundations based on pile and geosynthetic materials in fine-grained clayey soils

  • Shariati, Mahdi;Azar, Sadaf Mahmoudi;Arjomand, Mohammad-Ali;Tehrani, Hesam Salmani;Daei, Mojtaba;Safa, Maryam
    • Geomechanics and Engineering
    • /
    • 제19권6호
    • /
    • pp.473-484
    • /
    • 2019
  • In this paper, the geotechnical report of the Northern Fereshteh area in Tabriz is used and the characteristics of shallow foundation of a single pile and compared pile group and geogrid in terms of the settlement of a building foundation on clayey soil. Additionally, impacts of existing variables such as the number of geogrid layers, the length of the pile, and the depth of groundwater level affected by the dynamic load caused by the Taiwan Jiji earthquake via numerical analysis using PLAXIS software are examined. The results of fifty-four models indicated that the construction of a pile group with a diameter of 1 meter and a length of 14 meters significantly diminished the consolidation settlement of the soil in the Northern Fereshteh area, where the settlement value has been triggered by the load inflicted by earthquake. Moreover, the construction of four layers of geogrid at intervals of one meter led to a significant decrease in the settlement. Finally, after reaching a maximum depth, it had no reducing effects on the foundation settlement.

ECG 원칩 솔루션의 진단용 심전계 적용을 위한 타당성 연구 (A Feasibility Study for Application of Single-Chip Solution for Diagnostic Resting ECG)

  • 강범선;최기상
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권4호
    • /
    • pp.86-94
    • /
    • 2015
  • In order for medical devices to be used outside hospital, they have to be not only of small size but also power consumption has to be kept at low level. This study investigates the feasibility of application of ADS1298 ECG single-chip solution developed by Texas Instruments Inc. for use in development of a new platform for diagnostic resting ECG. To prove the feasibility of commercial products based on the ADS1298 chip, the performance of the ADS1298 chip was measured in terms of input impedance, common mode rejection, frequency response, and input dynamic range using the testing method under the suitability criteria of the IEC 60601-2-25 standard. Result of the this study shows that commercialization of the ECG products based on the ADS1298 ECG single-chip solution that satisfies the international standards would be possible, if the manufactures take the filter characteristics into account in building a new platform for diagnostic resting ECG.

4-자유도 배관 관절의 설계 및 동적 거동 예측 (Design and Dynamic Behavior Prediction of a 4-DOF Piping Joint)

  • 이윤용;강환국;이종림;임승철
    • 한국소음진동공학회논문집
    • /
    • 제26권3호
    • /
    • pp.298-307
    • /
    • 2016
  • In the building process of FPSOs(floating production, storage and offloading units) is the increasing demand of high performance piping joints that can be installed on its turret system and maintain smooth and long-term flow of ultra-high pressure crude oil, being subjected to external excitations such as wind and wave on the sea. Following such a trend, in this paper, a new-type piping joint of four effective degrees of freedom has been designed, and its dynamic characteristics predicted through mathematical modeling and computer simulations. Moreover, via an example it was shown how the yaw motion in particular can be independently controlled for future durability test despite strong kinetic couplings.

Field measurements of natural periods of vibration and structural damping of wind-excited tall residential buildings

  • Campbell, S.;Kwok, K.C.S.;Hitchcock, P.A.;Tse, K.T.;Leung, H.Y.
    • Wind and Structures
    • /
    • 제10권5호
    • /
    • pp.401-420
    • /
    • 2007
  • Field measurements of the wind-induced response of two residential reinforced concrete buildings, among the tallest in the world, have been performed during two typhoons. Natural periods and damping values have been determined and compared with other field measurements and empirical predictors. Suitable and common empirical predictors of natural period and structural damping have been obtained that describe the trend of tall, reinforced concrete buildings whose structural vibrations have been measured in the collection of studies in Hong Kong compiled by the authors. This data is especially important as the amount of information known about the dynamic parameters of buildings of these heights is limited. Effects of the variation of the natural period and damping values on the alongwind response of a tall building for serviceability-level wind conditions have been profiled using the gust response factor approach. When using this approach on these two buildings, the often overestimated natural periods and structural damping values suggested by empirical predictors tended to offset each other. Gust response factors calculated using the natural periods and structural damping values measured in the field were smaller than if calculated using design-stage values.

Effect of design spectral shape on inelastic response of RC frames subjected to spectrum matched ground motions

  • Ucar, Taner;Merter, Onur
    • Structural Engineering and Mechanics
    • /
    • 제69권3호
    • /
    • pp.293-306
    • /
    • 2019
  • In current seismic design codes, various elastic design acceleration spectra are defined considering different seismological and soil characteristics and are widely used tool for calculation of seismic loads acting on structures. Response spectrum analyses directly use the elastic design acceleration spectra whereas time history analyses use acceleration records of earthquakes whose acceleration spectra fit the design spectra of seismic codes. Due to the fact that obtaining coherent structural response quantities with the seismic design code considerations is a desired circumstance in dynamic analyses, the response spectra of earthquake records used in time history analyses had better fit to the design acceleration spectra of seismic codes. This paper evaluates structural response distributions of multi-story reinforced concrete frames obtained from nonlinear time history analyses which are performed by using the scaled earthquake records compatible with various elastic design spectra. Time domain scaling procedure is used while processing the response spectrum of real accelerograms to fit the design acceleration spectra. The elastic acceleration design spectra of Turkish Seismic Design Code 2007, Uniform Building Code 1997 and Eurocode 8 are considered as target spectra in the scaling procedure. Soil classes in different seismic codes are appropriately matched up with each other according to $V_{S30}$ values. The maximum roof displacements and the total base shears of considered frame structures are determined from nonlinear time history analyses using the scaled earthquake records and the results are presented by graphs and tables. Coherent structural response quantities reflecting the influence of elastic design spectra of various seismic codes are obtained.

Evolutionary-base finite element model updating and damage detection using modal testing results

  • Vahidi, Mehdi;Vahdani, Shahram;Rahimian, Mohammad;Jamshidi, Nima;Kanee, Alireza Taghavee
    • Structural Engineering and Mechanics
    • /
    • 제70권3호
    • /
    • pp.339-350
    • /
    • 2019
  • This research focuses on finite element model updating and damage assessment of structures at element level based on global nondestructive test results. For this purpose, an optimization system is generated to minimize the structural dynamic parameters discrepancies between numerical and experimental models. Objective functions are selected based on the square of Euclidean norm error of vibration frequencies and modal assurance criterion of mode shapes. In order to update the finite element model and detect local damages within the structural members, modern optimization techniques is implemented according to the evolutionary algorithms to meet the global optimized solution. Using a simulated numerical example, application of genetic algorithm (GA), particle swarm (PSO) and artificial bee colony (ABC) algorithms are investigated in FE model updating and damage detection problems to consider their accuracy and convergence characteristics. Then, a hybrid multi stage optimization method is presented merging advantages of PSO and ABC methods in finding damage location and extent. The efficiency of the methods have been examined using two simulated numerical examples, a laboratory dynamic test and a high-rise building field ambient vibration test results. The implemented evolutionary updating methods show successful results in accuracy and speed considering the incomplete and noisy experimental measured data.

Vibration-based structural health monitoring using CAE-aided unsupervised deep learning

  • Minte, Zhang;Tong, Guo;Ruizhao, Zhu;Yueran, Zong;Zhihong, Pan
    • Smart Structures and Systems
    • /
    • 제30권6호
    • /
    • pp.557-569
    • /
    • 2022
  • Vibration-based structural health monitoring (SHM) is crucial for the dynamic maintenance of civil building structures to protect property security and the lives of the public. Analyzing these vibrations with modern artificial intelligence and deep learning (DL) methods is a new trend. This paper proposed an unsupervised deep learning method based on a convolutional autoencoder (CAE), which can overcome the limitations of conventional supervised deep learning. With the convolutional core applied to the DL network, the method can extract features self-adaptively and efficiently. The effectiveness of the method in detecting damage is then tested using a benchmark model. Thereafter, this method is used to detect damage and instant disaster events in a rubber bearing-isolated gymnasium structure. The results indicate that the method enables the CAE network to learn the intact vibrations, so as to distinguish between different damage states of the benchmark model, and the outcome meets the high-dimensional data distribution characteristics visualized by the t-SNE method. Besides, the CAE-based network trained with daily vibrations of the isolating layer in the gymnasium can precisely recover newly collected vibration and detect the occurrence of the ground motion. The proposed method is effective at identifying nonlinear variations in the dynamic responses and has the potential to be used for structural condition assessment and safety warning.

한국형 운행 모드 기반 배출량 산정 모형 개발에 관한 연구 (A Study for Developing an Operating Mode-Based Emission Model for Korea)

  • 허혜정;;윤천주;양충헌;김진국
    • 대한교통학회지
    • /
    • 제34권2호
    • /
    • pp.180-190
    • /
    • 2016
  • 차량의 배기가스에는 질소산화물(NOx), 일산화탄소(CO), 이산화탄소($CO_2$), 입자상 물질(PM), 탄화수소(HC)와 같은 대기 오염물질이 포함되어 있다. 이러한 도로이동오염원의 배출량을 산정하기 위하여 한국에서는 평균속도 기반의 배출계수 곡선식을 사용하고 있으며 교통 계획과 교통 정책의 대안 평가에서 환경적 영향을 분석할 때 활용하고 있다. 그러나 최근에는 차량의 동적 운행 특성과 배출량의 관계를 보다 정확하게 반영하여 배출량을 산정할 수 있는 방법론과 이 방법론을 교통 시뮬레이션 모형에 통합하는 것에 대한 관심이 증가하고 있다. MOVES Lite는 MOVES의 간략 버전으로서 교통 시뮬레이션 모형에 통합될 수 있도록 개발된 운행모드 기반 배출량 산정모형이다. 본 연구에서는 한국의 차종, 주행특성, 배출계수, 배출규제등을 반영하여 MOVES Lite를 개량한 MOVES Lite-K를 개발하기 위한 연구를 수행하였고, 국내의 대표적 배출량 산정 방법인 평균속도 기반의 배출계수 곡선식과 MOVES Lite-K의 배출량 산정 특성을 비교하여 두 방법론의 차이와 국내 적용성을 살펴보았다.